`context` fields for objects and activities can now be generated based
on the object/activity `inReplyTo` field or its ActivityPub ID, as a
fallback method in cases where `context` fields are missing for incoming
activities and objects.
Incoming Pleroma replies to a Misskey thread were rejected due to a
broken context fix, which caused them to not be visible until a
non-Pleroma user interacted with the replies.
This fix properly sets the post-fix object context to its parent Create
activity as well, if it was changed.
This field replaces the now deprecated conversation_id field, and now
exposes the ActivityPub object `context` directly via the MastoAPI
instead of relying on StatusNet-era data concepts.
This field seems to be a left-over from the StatusNet era.
If your application uses `pleroma.conversation_id`: this field is
deprecated.
It is currently stubbed instead by doing a CRC32 of the context, and
clearing the MSB to avoid overflow exceptions with signed integers on
the different clients using this field (Java/Kotlin code, mostly; see
Husky and probably other mobile clients.)
This should be removed in a future version of Pleroma. Pleroma-FE
currently depends on this field, as well.
30 to 70% of the objects in the object table are simple JSON objects
containing a single field, 'id', being the context's ID. The reason for
the creation of an object per context seems to be an old relic from the
StatusNet era, and has only been used nowadays as an helper for threads
in Pleroma-FE via the `pleroma.conversation_id` field in status views.
An object per context was created, and its numerical ID (table column)
was used and stored as 'context_id' in the object and activity along
with the full 'context' URI/string.
This commit removes this field and stops creation of objects for each
context, which will also allow incoming activities to use activity IDs
as contexts, something which was not possible before, or would have been
very broken under most circumstances.
The `pleroma.conversation_id` field has been reimplemented in a way to
maintain backwards-compatibility by calculating a CRC32 of the full
context URI/string in the object, instead of relying on the row ID for
the created context object.
This implements fully_qualify_emoji/1, which will return the
fully-qualified version of an emoji if it knows of one, or return the
emoji unmodified if not.
This code generates combinations per emoji: for each FE0F, all possible
combinations of the character being removed or staying will be
generated. This is made as an attempt to find all partially-qualified
and unqualified versions of a fully-qualified emoji.
I have found *no cases* for which this would be a problem, after
browsing the entire emoji list in emoji-test.txt. This is safe, and,
sadly, most likely the sanest too.
Tries fully-qualifying emoji when receiving them, by adding the emoji
variation sequence to the received reaction emoji.
This issue arises when other instance software, such as Misskey, tries
reacting with emoji that have unqualified or minimally qualified
variants, like a red heart. Pleroma only accepts fully qualified emoji
in emoji reactions, and refused those emoji. Now, Pleroma will attempt
to properly qualify them first, and reject them if checks still fail.
This commit contains changes to tests proposed by lanodan.
Co-authored-by: Haelwenn <contact+git.pleroma.social@hacktivis.me>
I used keyword_list[:key], but if the key doesn't exist, it will return nil. I actually expect a list and further down the code I use that list.
I believe the key should always be present, but in case it's not, it's better to return an empty list instead of nil. That way the code wont fail further down the line.
During attachment upload Pleroma returns a "description" field. Pleroma-fe has an MR to use that to pre-fill the image description field, <https://git.pleroma.social/pleroma/pleroma-fe/-/merge_requests/1399>
* This MR allows Pleroma to read the EXIF data during upload and return the description to the FE
* If a description is already present (e.g. because a previous module added it), it will use that
* Otherwise it will read from the EXIF data. First it will check -ImageDescription, if that's empty, it will check -iptc:Caption-Abstract
* If no description is found, it will simply return nil, just like before
* When people set up a new instance, they will be asked if they want to read metadata and this module will be activated if so
This was taken from an MR i did on Pleroma and isn't finished yet.