defmodule RDF.Graph do @moduledoc """ Defines a RDF Graph. A `RDF.Graph` represents a set of `RDF.Description`s. Named vs. unnamed graphs ... """ defstruct name: nil, descriptions: %{} @behaviour Access alias RDF.Description import RDF.Statement @type t :: module @doc """ Creates an empty unnamed `RDF.Graph`. """ def new, do: %RDF.Graph{} @doc """ Creates an unnamed `RDF.Graph` with an initial triple. """ def new({_, _, _} = triple), do: new() |> add(triple) @doc """ Creates an unnamed `RDF.Graph` with initial triples. """ def new(triples) when is_list(triples), do: new() |> add(triples) @doc """ Creates an unnamed `RDF.Graph` with a `RDF.Description`. """ def new(%RDF.Description{} = description), do: new() |> add(description) @doc """ Creates an unnamed `RDF.Graph` from another `RDF.Graph`. """ def new(%RDF.Graph{descriptions: descriptions}), do: %RDF.Graph{descriptions: descriptions} @doc """ Creates an empty unnamed `RDF.Graph`. """ def new(nil), do: new() @doc """ Creates an empty named `RDF.Graph`. """ def new(name), do: %RDF.Graph{name: convert_graph_name(name)} @doc """ Creates a named `RDF.Graph` with an initial triple. """ def new(name, triple = {_, _, _}), do: new(name) |> add(triple) @doc """ Creates a named `RDF.Graph` with initial triples. """ def new(name, triples) when is_list(triples), do: new(name) |> add(triples) @doc """ Creates a named `RDF.Graph` with a `RDF.Description`. """ def new(name, %RDF.Description{} = description), do: new(name) |> add(description) @doc """ Creates a named `RDF.Graph` from another `RDF.Graph`. """ def new(name, %RDF.Graph{descriptions: descriptions}), do: %RDF.Graph{new(name) | descriptions: descriptions} @doc """ Creates an unnamed `RDF.Graph` with initial triples. """ def new(subject, predicate, objects), do: new() |> add(subject, predicate, objects) @doc """ Creates a named `RDF.Graph` with initial triples. """ def new(name, subject, predicate, objects), do: new(name) |> add(subject, predicate, objects) @doc """ Adds triples to a `RDF.Graph`. """ def add(%RDF.Graph{} = graph, subject, predicate, objects), do: add(graph, {subject, predicate, objects}) @doc """ Adds triples to a `RDF.Graph`. Note: When the statements to be added are given as another `RDF.Graph`, the graph name must not match graph name of the graph to which the statements are added. As opposed to that `RDF.Data.merge/2` will produce a `RDF.Dataset` containing both graphs. """ def add(graph, triples) def add(%RDF.Graph{} = graph, {subject, _, _} = statement), do: do_add(graph, convert_subject(subject), statement) def add(graph, {subject, predicate, object, _}), do: add(graph, {subject, predicate, object}) def add(graph, triples) when is_list(triples) do Enum.reduce triples, graph, fn (triple, graph) -> add(graph, triple) end end def add(%RDF.Graph{} = graph, %Description{subject: subject} = description), do: do_add(graph, subject, description) def add(graph, %RDF.Graph{descriptions: descriptions}) do Enum.reduce descriptions, graph, fn ({_, description}, graph) -> add(graph, description) end end defp do_add(%RDF.Graph{name: name, descriptions: descriptions}, subject, statements) do %RDF.Graph{name: name, descriptions: Map.update(descriptions, subject, Description.new(statements), fn description -> Description.add(description, statements) end) } end @doc """ Puts statements to a `RDF.Graph`, overwriting all statements with the same subject and predicate. # Examples iex> RDF.Graph.new(EX.S, EX.P, EX.O1) |> RDF.Graph.put(EX.S, EX.P, EX.O2) RDF.Graph.new(EX.S, EX.P, EX.O2) iex> RDF.Graph.new(EX.S, EX.P1, EX.O1) |> RDF.Graph.put(EX.S, EX.P2, EX.O2) RDF.Graph.new([{EX.S, EX.P1, EX.O1}, {EX.S, EX.P2, EX.O2}]) """ def put(%RDF.Graph{} = graph, subject, predicate, objects), do: put(graph, {subject, predicate, objects}) @doc """ Adds statements to a `RDF.Graph` and overwrites all existing statements with the same subjects and predicates. # Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |> ...> RDF.Graph.put([{EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}]) RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}]) """ def put(graph, statements) def put(%RDF.Graph{} = graph, {subject, _, _} = statement), do: do_put(graph, convert_subject(subject), statement) def put(graph, {subject, predicate, object, _}), do: put(graph, {subject, predicate, object}) def put(%RDF.Graph{} = graph, %Description{subject: subject} = description), do: do_put(graph, subject, description) def put(graph, %RDF.Graph{descriptions: descriptions}) do Enum.reduce descriptions, graph, fn ({_, description}, graph) -> put(graph, description) end end def put(%RDF.Graph{} = graph, statements) when is_map(statements) do Enum.reduce statements, graph, fn ({subject, predications}, graph) -> put(graph, subject, predications) end end def put(%RDF.Graph{} = graph, statements) when is_list(statements) do put(graph, Enum.group_by(statements, &(elem(&1, 0)), fn {_, p, o} -> {p, o} end)) end # TODO: Can we reduce this case also to do_put? Only the initializer differs ... def put(%RDF.Graph{name: name, descriptions: descriptions}, subject, predications) when is_list(predications) do with subject = convert_subject(subject) do %RDF.Graph{name: name, descriptions: Map.update(descriptions, subject, Description.new(subject, predications), fn current -> Description.put(current, predications) end) } end end def put(graph, subject, {_predicate, _objects} = predications), do: put(graph, subject, [predications]) defp do_put(%RDF.Graph{name: name, descriptions: descriptions}, subject, statements) do %RDF.Graph{name: name, descriptions: Map.update(descriptions, subject, Description.new(statements), fn current -> Description.put(current, statements) end) } end @doc """ Deletes statements from a `RDF.Graph`. """ def delete(graph, subject, predicate, object), do: delete(graph, {subject, predicate, object}) @doc """ Deletes statements from a `RDF.Graph`. Note: When the statements to be deleted are given as another `RDF.Graph`, the graph name must not match graph name of the graph from which the statements are deleted. If you want to delete only graphs with matching names, you can use `RDF.Data.delete/2`. """ def delete(graph, triples) def delete(%RDF.Graph{} = graph, {subject, _, _} = triple), do: do_delete(graph, convert_subject(subject), triple) def delete(graph, {subject, predicate, object, _}), do: delete(graph, {subject, predicate, object}) def delete(%RDF.Graph{} = graph, triples) when is_list(triples) do Enum.reduce triples, graph, fn (triple, graph) -> delete(graph, triple) end end def delete(%RDF.Graph{} = graph, %Description{subject: subject} = description), do: do_delete(graph, subject, description) def delete(%RDF.Graph{} = graph, %RDF.Graph{descriptions: descriptions}) do Enum.reduce descriptions, graph, fn ({_, description}, graph) -> delete(graph, description) end end defp do_delete(%RDF.Graph{name: name, descriptions: descriptions} = graph, subject, statements) do with description when not is_nil(description) <- descriptions[subject], new_description = Description.delete(description, statements) do %RDF.Graph{name: name, descriptions: if Enum.empty?(new_description) do Map.delete(descriptions, subject) else Map.put(descriptions, subject, new_description) end } else nil -> graph end end @doc """ Deletes all statements with the given subjects. """ def delete_subjects(graph, subjects) def delete_subjects(%RDF.Graph{} = graph, subjects) when is_list(subjects) do Enum.reduce subjects, graph, fn (subject, graph) -> delete_subjects(graph, subject) end end def delete_subjects(%RDF.Graph{name: name, descriptions: descriptions}, subject) do with subject = convert_subject(subject) do %RDF.Graph{name: name, descriptions: Map.delete(descriptions, subject)} end end @doc """ Fetches the description of the given subject. When the subject can not be found `:error` is returned. # Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |> ...> RDF.Graph.fetch(EX.S1) {:ok, RDF.Description.new({EX.S1, EX.P1, EX.O1})} iex> RDF.Graph.fetch(RDF.Graph.new, EX.foo) :error """ def fetch(%RDF.Graph{descriptions: descriptions}, subject) do Access.fetch(descriptions, convert_subject(subject)) end @doc """ Gets the description of the given subject. When the subject can not be found the optionally given default value or `nil` is returned. # Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |> ...> RDF.Graph.get(EX.S1) RDF.Description.new({EX.S1, EX.P1, EX.O1}) iex> RDF.Graph.get(RDF.Graph.new, EX.Foo) nil iex> RDF.Graph.get(RDF.Graph.new, EX.Foo, :bar) :bar """ def get(%RDF.Graph{} = graph, subject, default \\ nil) do case fetch(graph, subject) do {:ok, value} -> value :error -> default end end @doc """ The `RDF.Description` of the given subject. """ def description(%RDF.Graph{descriptions: descriptions}, subject), do: Map.get(descriptions, convert_subject(subject)) @doc """ Gets and updates the description of the given subject, in a single pass. Invokes the passed function on the `RDF.Description` of the given subject; this function should return either `{description_to_return, new_description}` or `:pop`. If the passed function returns `{description_to_return, new_description}`, the return value of `get_and_update` is `{description_to_return, new_graph}` where `new_graph` is the input `Graph` updated with `new_description` for the given subject. If the passed function returns `:pop` the description for the given subject is removed and a `{removed_description, new_graph}` tuple gets returned. # Examples iex> RDF.Graph.new({EX.S, EX.P, EX.O}) |> ...> RDF.Graph.get_and_update(EX.S, fn current_description -> ...> {current_description, {EX.P, EX.NEW}} ...> end) {RDF.Description.new(EX.S, EX.P, EX.O), RDF.Graph.new(EX.S, EX.P, EX.NEW)} """ def get_and_update(%RDF.Graph{} = graph, subject, fun) do with subject = convert_subject(subject) do case fun.(get(graph, subject)) do {old_description, new_description} -> {old_description, put(graph, subject, new_description)} :pop -> pop(graph, subject) other -> raise "the given function must return a two-element tuple or :pop, got: #{inspect(other)}" end end end @doc """ Pops the description of the given subject. When the subject can not be found the optionally given default value or `nil` is returned. # Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |> ...> RDF.Graph.pop(EX.S1) {RDF.Description.new({EX.S1, EX.P1, EX.O1}), RDF.Graph.new({EX.S2, EX.P2, EX.O2})} iex> RDF.Graph.pop(RDF.Graph.new({EX.S, EX.P, EX.O}), EX.Missing) {nil, RDF.Graph.new({EX.S, EX.P, EX.O})} """ def pop(%RDF.Graph{name: name, descriptions: descriptions} = graph, subject) do case Access.pop(descriptions, convert_subject(subject)) do {nil, _} -> {nil, graph} {description, new_descriptions} -> {description, %RDF.Graph{name: name, descriptions: new_descriptions}} end end @doc """ The number of subjects within a `RDF.Graph`. # Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Graph.subject_count 2 """ def subject_count(%RDF.Graph{descriptions: descriptions}), do: Enum.count(descriptions) @doc """ The number of statements within a `RDF.Graph`. # Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Graph.triple_count 3 """ def triple_count(%RDF.Graph{descriptions: descriptions}) do Enum.reduce descriptions, 0, fn ({_subject, description}, count) -> count + Description.count(description) end end @doc """ The set of all subjects used in the statements within a `RDF.Graph`. # Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Graph.subjects MapSet.new([RDF.uri(EX.S1), RDF.uri(EX.S2)]) """ def subjects(%RDF.Graph{descriptions: descriptions}), do: descriptions |> Map.keys |> MapSet.new @doc """ The set of all properties used in the predicates of the statements within a `RDF.Graph`. # Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Graph.predicates MapSet.new([EX.p1, EX.p2]) """ def predicates(%RDF.Graph{descriptions: descriptions}) do Enum.reduce descriptions, MapSet.new, fn ({_, description}, acc) -> description |> Description.predicates |> MapSet.union(acc) end end @doc """ The set of all resources used in the objects within a `RDF.Graph`. Note: This function does collect only URIs and BlankNodes, not Literals. # Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S3, EX.p1, EX.O2}, ...> {EX.S4, EX.p2, RDF.bnode(:bnode)}, ...> {EX.S5, EX.p3, "foo"} ...> ]) |> RDF.Graph.objects MapSet.new([RDF.uri(EX.O1), RDF.uri(EX.O2), RDF.bnode(:bnode)]) """ def objects(%RDF.Graph{descriptions: descriptions}) do Enum.reduce descriptions, MapSet.new, fn ({_, description}, acc) -> description |> Description.objects |> MapSet.union(acc) end end @doc """ The set of all resources used within a `RDF.Graph`. # Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p1, EX.O2}, ...> {EX.S2, EX.p2, RDF.bnode(:bnode)}, ...> {EX.S3, EX.p1, "foo"} ...> ]) |> RDF.Graph.resources MapSet.new([RDF.uri(EX.S1), RDF.uri(EX.S2), RDF.uri(EX.S3), RDF.uri(EX.O1), RDF.uri(EX.O2), RDF.bnode(:bnode), EX.p1, EX.p2]) """ def resources(graph = %RDF.Graph{descriptions: descriptions}) do Enum.reduce(descriptions, MapSet.new, fn ({_, description}, acc) -> description |> Description.resources |> MapSet.union(acc) end) |> MapSet.union(subjects(graph)) end @doc """ All statements within a `RDF.Graph`. # Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3} ...> ]) |> RDF.Graph.triples [{RDF.uri(EX.S1), RDF.uri(EX.p1), RDF.uri(EX.O1)}, {RDF.uri(EX.S1), RDF.uri(EX.p2), RDF.uri(EX.O3)}, {RDF.uri(EX.S2), RDF.uri(EX.p2), RDF.uri(EX.O2)}] """ def triples(graph = %RDF.Graph{}), do: Enum.to_list(graph) defdelegate statements(graph), to: RDF.Graph, as: :triples def include?(%RDF.Graph{descriptions: descriptions}, triple = {subject, _, _}) do with subject = convert_subject(subject), %Description{} <- description = descriptions[subject] do Description.include?(description, triple) else _ -> false end end # TODO: Can/should we isolate and move the Enumerable specific part to the Enumerable implementation? def reduce(%RDF.Graph{descriptions: descriptions}, {:cont, acc}, _fun) when map_size(descriptions) == 0, do: {:done, acc} def reduce(%RDF.Graph{} = graph, {:cont, acc}, fun) do {triple, rest} = RDF.Graph.pop(graph) reduce(rest, fun.(triple, acc), fun) end def reduce(_, {:halt, acc}, _fun), do: {:halted, acc} def reduce(%RDF.Graph{} = graph, {:suspend, acc}, fun) do {:suspended, acc, &reduce(graph, &1, fun)} end def pop(%RDF.Graph{descriptions: descriptions} = graph) when descriptions == %{}, do: {nil, graph} def pop(%RDF.Graph{name: name, descriptions: descriptions}) do # TODO: Find a faster way ... [{subject, description}] = Enum.take(descriptions, 1) {triple, popped_description} = Description.pop(description) popped = if Enum.empty?(popped_description), do: descriptions |> Map.delete(subject), else: descriptions |> Map.put(subject, popped_description) {triple, %RDF.Graph{name: name, descriptions: popped}} end end defimpl Enumerable, for: RDF.Graph do def reduce(desc, acc, fun), do: RDF.Graph.reduce(desc, acc, fun) def member?(desc, triple), do: {:ok, RDF.Graph.include?(desc, triple)} def count(desc), do: {:ok, RDF.Graph.triple_count(desc)} end