defmodule RDF.Dataset do @moduledoc """ A set of `RDF.Graph`s. It may have multiple named graphs and at most one unnamed ("default") graph. `RDF.Dataset` implements: - Elixir's `Access` behaviour - Elixir's `Enumerable` protocol - Elixir's `Inspect` protocol - the `RDF.Data` protocol """ defstruct name: nil, graphs: %{} @behaviour Access alias RDF.{Graph, Description, IRI, Statement, PrefixMap, PropertyMap} import RDF.Statement, only: [coerce_subject: 1, coerce_graph_name: 1] import RDF.Utils @type graph_name :: IRI.t() | nil @type t :: %__MODULE__{ name: graph_name, graphs: %{graph_name => Graph.t()} } @type input :: Graph.input() | t @type update_graph_fun :: (Graph.t() -> {Graph.t(), input} | :pop) @doc """ Creates an empty unnamed `RDF.Dataset`. """ @spec new :: t def new, do: %__MODULE__{} @doc """ Creates an `RDF.Dataset`. If a keyword list is given an empty dataset is created. Otherwise an unnamed dataset initialized with the given data is created. See `new/2` for available arguments and the different ways to provide data. ## Examples RDF.Dataset.new(name: EX.GraphName) RDF.Dataset.new(init: {EX.S, EX.p, EX.O}) RDF.Dataset.new({EX.S, EX.p, EX.O}) """ @spec new(input | keyword) :: t def new(data_or_opts) def new(data_or_opts) when is_list(data_or_opts) and length(data_or_opts) != 0 do if Keyword.keyword?(data_or_opts) do {data, options} = Keyword.pop(data_or_opts, :init) new(data, options) else new(data_or_opts, []) end end def new(data), do: new(data, []) @doc """ Creates an `RDF.Dataset` initialized with data. The initial RDF triples can be provided in any form accepted by `add/3`. Available options: - `name`: the name of the dataset to be created - `init`: some data with which the dataset should be initialized; the data can be provided in any form accepted by `add/3` and above that also with a function returning the initialization data in any of these forms """ @spec new(input, keyword) :: t def new(data, opts) def new(%__MODULE__{} = graph, opts) do %__MODULE__{graph | name: opts |> Keyword.get(:name) |> coerce_graph_name()} end def new(data, opts) do %__MODULE__{} |> new(opts) |> init(data, opts) end defp init(dataset, nil, _), do: dataset defp init(dataset, fun, opts) when is_function(fun), do: add(dataset, fun.(), opts) defp init(dataset, data, opts), do: add(dataset, data, opts) @doc """ Returns the dataset name IRI of `dataset`. """ @spec name(t) :: Statement.graph_name() def name(%__MODULE__{} = dataset), do: dataset.name @doc """ Changes the dataset name of `dataset`. """ @spec change_name(t, Statement.coercible_graph_name()) :: t def change_name(%__MODULE__{} = dataset, new_name) do %__MODULE__{dataset | name: coerce_graph_name(new_name)} end defp destination_graph(opts, default \\ nil) do opts |> Keyword.get(:graph, default) |> coerce_graph_name() end @doc """ Adds triples and quads to a `RDF.Dataset`. The triples can be provided in any form accepted by `add/2`. - as a single statement tuple - an `RDF.Description` - an `RDF.Graph` - an `RDF.Dataset` - or a list with any combination of the former The `graph` option allows to set a different destination graph to which the statements should be added, ignoring the graph context of given quads or the name of given graphs in `input`. Note: When the statements to be added are given as another `RDF.Dataset` and a destination graph is set with the `graph` option, the descriptions of the subjects in the different graphs are aggregated. """ @spec add(t, input, keyword) :: t def add(dataset, input, opts \\ []) def add(%__MODULE__{} = dataset, {_, _, _, graph} = quad, opts), do: do_add(dataset, destination_graph(opts, graph), quad, opts) def add(%__MODULE__{} = dataset, %Description{} = description, opts), do: do_add(dataset, destination_graph(opts), description, opts) def add(%__MODULE__{} = dataset, %Graph{} = graph, opts), do: do_add(dataset, destination_graph(opts, graph.name), graph, opts) def add(%__MODULE__{} = dataset, %__MODULE__{} = other_dataset, opts) do other_dataset |> graphs() |> Enum.reduce(dataset, &add(&2, &1, opts)) end def add(dataset, input, opts) when is_list(input) or (is_map(input) and not is_struct(input)) do Enum.reduce(input, dataset, &add(&2, &1, opts)) end def add(%__MODULE__{} = dataset, input, opts), do: do_add(dataset, destination_graph(opts), input, opts) defp do_add(dataset, graph_name, input, opts) do %__MODULE__{ dataset | graphs: lazy_map_update( dataset.graphs, graph_name, # when new: fn -> Graph.new(input, Keyword.put(opts, :name, graph_name)) end, # when update: fn graph -> Graph.add(graph, input, opts) end ) } end @doc """ Adds statements to a `RDF.Dataset` overwriting existing statements with the subjects given in the `input` data. The `graph` option allows to set a different destination graph to which the statements should be added, ignoring the graph context of given quads or the name of given graphs in `input`. Note: When the statements to be added are given as another `RDF.Dataset` and a destination graph is set with the `graph` option, the descriptions of the subjects in the different graphs are aggregated. ## Examples iex> dataset = RDF.Dataset.new({EX.S, EX.P1, EX.O1}) ...> RDF.Dataset.put(dataset, {EX.S, EX.P2, EX.O2}) RDF.Dataset.new({EX.S, EX.P2, EX.O2}) iex> RDF.Dataset.put(dataset, {EX.S2, EX.P2, EX.O2}) RDF.Dataset.new([{EX.S, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) """ @spec put(t, input, keyword) :: t def put(dataset, input, opts \\ []) def put(%__MODULE__{} = dataset, %__MODULE__{} = input, opts) do %__MODULE__{ dataset | graphs: Enum.reduce( input.graphs, dataset.graphs, fn {graph_name, graph}, graphs -> Map.update( graphs, graph_name, graph, fn current -> Graph.put(current, graph, opts) end ) end ) } end def put(%__MODULE__{} = dataset, input, opts) do put(dataset, new() |> add(input, opts), opts) end @doc """ Adds statements to a `RDF.Dataset` and overwrites all existing statements with the same subject-predicate combinations given in the `input` data. The `graph` option allows to set a different destination graph to which the statements should be added, ignoring the graph context of given quads or the name of given graphs in `input`. Note: When the statements to be added are given as another `RDF.Dataset` and a destination graph is set with the `graph` option, the descriptions of the subjects in the different graphs are aggregated. ## Examples iex> dataset = RDF.Dataset.new({EX.S, EX.P1, EX.O1}) ...> RDF.Dataset.put_properties(dataset, {EX.S, EX.P1, EX.O2}) RDF.Dataset.new({EX.S, EX.P1, EX.O2}) iex> RDF.Dataset.put_properties(dataset, {EX.S, EX.P2, EX.O2}) RDF.Dataset.new([{EX.S, EX.P1, EX.O1}, {EX.S, EX.P2, EX.O2}]) iex> RDF.Dataset.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) ...> |> RDF.Dataset.put_properties([{EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}]) RDF.Dataset.new([{EX.S1, EX.P1, EX.O1}, {EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}]) """ @spec put_properties(t, input, keyword) :: t def put_properties(dataset, input, opts \\ []) def put_properties(%__MODULE__{} = dataset, %__MODULE__{} = input, opts) do %__MODULE__{ dataset | graphs: Enum.reduce( input.graphs, dataset.graphs, fn {graph_name, graph}, graphs -> Map.update( graphs, graph_name, graph, fn current -> Graph.put_properties(current, graph, opts) end ) end ) } end def put_properties(%__MODULE__{} = dataset, input, opts) do put_properties(dataset, new() |> add(input, opts), opts) end @doc """ Deletes statements from a `RDF.Dataset`. The `graph` option allows to set a different destination graph from which the statements should be deleted, ignoring the graph context of given quads or the name of given graphs. Note: When the statements to be deleted are given as another `RDF.Dataset`, the dataset name must not match dataset name of the dataset from which the statements are deleted. If you want to delete only datasets with matching names, you can use `RDF.Data.delete/2`. """ @spec delete(t, input, keyword) :: t def delete(dataset, input, opts \\ []) def delete(%__MODULE__{} = dataset, {_, _, _, graph} = quad, opts), do: do_delete(dataset, destination_graph(opts, graph), quad, opts) def delete(%__MODULE__{} = dataset, %Description{} = description, opts), do: do_delete(dataset, destination_graph(opts), description, opts) def delete(%__MODULE__{} = dataset, %Graph{} = graph, opts), do: do_delete(dataset, destination_graph(opts, graph.name), graph, opts) def delete(%__MODULE__{} = dataset, %__MODULE__{} = other_dataset, opts) do other_dataset |> graphs() |> Enum.reduce(dataset, &delete(&2, &1, opts)) end def delete(dataset, input, opts) when is_list(input) or (is_map(input) and not is_struct(input)) do Enum.reduce(input, dataset, &delete(&2, &1, opts)) end def delete(%__MODULE__{} = dataset, input, opts) when not is_struct(input), do: do_delete(dataset, destination_graph(opts), input, opts) defp do_delete(dataset, graph_name, input, opts) do if existing_graph = dataset.graphs[graph_name] do new_graph = Graph.delete(existing_graph, input, opts) %__MODULE__{ dataset | graphs: if Graph.empty?(new_graph) do Map.delete(dataset.graphs, graph_name) else Map.put(dataset.graphs, graph_name, new_graph) end } else dataset end end @doc """ Deletes the given graph. """ @spec delete_graph(t, Statement.graph_name() | [Statement.graph_name()] | nil) :: t def delete_graph(graph, graph_names) def delete_graph(%__MODULE__{} = dataset, graph_names) when is_list(graph_names) do Enum.reduce(graph_names, dataset, &delete_graph(&2, &1)) end def delete_graph(%__MODULE__{} = dataset, graph_name) do %__MODULE__{dataset | graphs: Map.delete(dataset.graphs, coerce_graph_name(graph_name))} end @doc """ Deletes the default graph. """ @spec delete_default_graph(t) :: t def delete_default_graph(%__MODULE__{} = graph), do: delete_graph(graph, nil) @doc """ Fetches the `RDF.Graph` with the given name. When a graph with the given name can not be found can not be found `:error` is returned. ## Examples iex> dataset = RDF.Dataset.new([{EX.S1, EX.P1, EX.O1, EX.Graph}, {EX.S2, EX.P2, EX.O2}]) ...> RDF.Dataset.fetch(dataset, EX.Graph) {:ok, RDF.Graph.new({EX.S1, EX.P1, EX.O1}, name: EX.Graph)} iex> RDF.Dataset.fetch(dataset, nil) {:ok, RDF.Graph.new({EX.S2, EX.P2, EX.O2})} iex> RDF.Dataset.fetch(dataset, EX.Foo) :error """ @impl Access @spec fetch(t, Statement.graph_name() | nil) :: {:ok, Graph.t()} | :error def fetch(%__MODULE__{} = dataset, graph_name) do Access.fetch(dataset.graphs, coerce_graph_name(graph_name)) end @doc """ Fetches the `RDF.Graph` with the given name. When a graph with the given name can not be found can not be found the optionally given default value or `nil` is returned ## Examples iex> dataset = RDF.Dataset.new([{EX.S1, EX.P1, EX.O1, EX.Graph}, {EX.S2, EX.P2, EX.O2}]) ...> RDF.Dataset.get(dataset, EX.Graph) RDF.Graph.new({EX.S1, EX.P1, EX.O1}, name: EX.Graph) iex> RDF.Dataset.get(dataset, nil) RDF.Graph.new({EX.S2, EX.P2, EX.O2}) iex> RDF.Dataset.get(dataset, EX.Foo) nil iex> RDF.Dataset.get(dataset, EX.Foo, :bar) :bar """ @spec get(t, Statement.graph_name() | nil, Graph.t() | nil) :: Graph.t() | nil def get(%__MODULE__{} = dataset, graph_name, default \\ nil) do case fetch(dataset, graph_name) do {:ok, value} -> value :error -> default end end @doc """ The graph with given name. """ @spec graph(t, Statement.graph_name() | nil) :: Graph.t() def graph(%__MODULE__{} = dataset, graph_name) do Map.get(dataset.graphs, coerce_graph_name(graph_name)) end @doc """ The default graph of a `RDF.Dataset`. """ @spec default_graph(t) :: Graph.t() def default_graph(%__MODULE__{} = dataset) do Map.get(dataset.graphs, nil, Graph.new()) end @doc """ The set of all graphs. """ @spec graphs(t) :: [Graph.t()] def graphs(%__MODULE__{} = dataset), do: Map.values(dataset.graphs) @doc """ Gets and updates the graph with the given name, in a single pass. Invokes the passed function on the `RDF.Graph` with the given name; this function should return either `{graph_to_return, new_graph}` or `:pop`. If the passed function returns `{graph_to_return, new_graph}`, the return value of `get_and_update` is `{graph_to_return, new_dataset}` where `new_dataset` is the input `Dataset` updated with `new_graph` for the given name. If the passed function returns `:pop` the graph with the given name is removed and a `{removed_graph, new_dataset}` tuple gets returned. ## Examples iex> dataset = RDF.Dataset.new({EX.S, EX.P, EX.O, EX.Graph}) ...> RDF.Dataset.get_and_update(dataset, EX.Graph, fn current_graph -> ...> {current_graph, {EX.S, EX.P, EX.NEW}} ...> end) {RDF.Graph.new({EX.S, EX.P, EX.O}, name: EX.Graph), RDF.Dataset.new({EX.S, EX.P, EX.NEW, EX.Graph})} """ @impl Access @spec get_and_update(t, Statement.graph_name() | nil, update_graph_fun) :: {Graph.t(), input} def get_and_update(%__MODULE__{} = dataset, graph_name, fun) do graph_context = coerce_graph_name(graph_name) case fun.(get(dataset, graph_context)) do {old_graph, new_graph} -> {old_graph, put(dataset, new_graph, graph: graph_context)} :pop -> pop(dataset, graph_context) other -> raise "the given function must return a two-element tuple or :pop, got: #{inspect(other)}" end end @doc """ Pops an arbitrary statement from a `RDF.Dataset`. """ @spec pop(t) :: {Statement.t() | nil, t} def pop(dataset) def pop(%__MODULE__{graphs: graphs} = dataset) when graphs == %{}, do: {nil, dataset} def pop(%__MODULE__{graphs: graphs} = dataset) do # TODO: Find a faster way ... [{graph_name, graph}] = Enum.take(graphs, 1) {{s, p, o}, popped_graph} = Graph.pop(graph) popped = if Graph.empty?(popped_graph), do: graphs |> Map.delete(graph_name), else: graphs |> Map.put(graph_name, popped_graph) { {s, p, o, graph_name}, %__MODULE__{dataset | graphs: popped} } end @doc """ Pops the graph with the given name. When a graph with given name can not be found the optionally given default value or `nil` is returned. ## Examples iex> dataset = RDF.Dataset.new([ ...> {EX.S1, EX.P1, EX.O1, EX.Graph}, ...> {EX.S2, EX.P2, EX.O2}]) ...> RDF.Dataset.pop(dataset, EX.Graph) {RDF.Graph.new({EX.S1, EX.P1, EX.O1}, name: EX.Graph), RDF.Dataset.new({EX.S2, EX.P2, EX.O2})} iex> RDF.Dataset.pop(dataset, EX.Foo) {nil, dataset} """ @impl Access @spec pop(t, Statement.coercible_graph_name()) :: {Statement.t() | nil, t} def pop(%__MODULE__{} = dataset, graph_name) do case Access.pop(dataset.graphs, coerce_graph_name(graph_name)) do {nil, _} -> {nil, dataset} {graph, new_graphs} -> {graph, %__MODULE__{dataset | graphs: new_graphs}} end end @doc """ The number of graphs within a `RDF.Dataset`. ## Examples iex> RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3, EX.Graph}]) ...> |> RDF.Dataset.graph_count() 2 """ @spec graph_count(t) :: non_neg_integer def graph_count(%__MODULE__{} = dataset) do map_size(dataset.graphs) end @doc """ The number of statements within a `RDF.Dataset`. ## Examples iex> RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1, EX.Graph}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Dataset.statement_count 3 """ @spec statement_count(t) :: non_neg_integer def statement_count(%__MODULE__{} = dataset) do Enum.reduce(dataset.graphs, 0, fn {_, graph}, count -> count + Graph.triple_count(graph) end) end @doc """ The set of all subjects used in the statement within all graphs of a `RDF.Dataset`. ## Examples iex> RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1, EX.Graph}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Dataset.subjects MapSet.new([RDF.iri(EX.S1), RDF.iri(EX.S2)]) """ def subjects(%__MODULE__{} = dataset) do Enum.reduce(dataset.graphs, MapSet.new(), fn {_, graph}, subjects -> MapSet.union(subjects, Graph.subjects(graph)) end) end @doc """ The set of all properties used in the predicates within all graphs of a `RDF.Dataset`. ## Examples iex> RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1, EX.Graph}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Dataset.predicates MapSet.new([EX.p1, EX.p2]) """ def predicates(%__MODULE__{} = dataset) do Enum.reduce(dataset.graphs, MapSet.new(), fn {_, graph}, predicates -> MapSet.union(predicates, Graph.predicates(graph)) end) end @doc """ The set of all resources used in the objects within a `RDF.Dataset`. Note: This function does collect only IRIs and BlankNodes, not Literals. ## Examples iex> RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1, EX.Graph}, ...> {EX.S2, EX.p2, EX.O2, EX.Graph}, ...> {EX.S3, EX.p1, EX.O2}, ...> {EX.S4, EX.p2, RDF.bnode(:bnode)}, ...> {EX.S5, EX.p3, "foo"} ...> ]) |> RDF.Dataset.objects MapSet.new([RDF.iri(EX.O1), RDF.iri(EX.O2), RDF.bnode(:bnode)]) """ def objects(%__MODULE__{} = dataset) do Enum.reduce(dataset.graphs, MapSet.new(), fn {_, graph}, objects -> MapSet.union(objects, Graph.objects(graph)) end) end @doc """ The set of all resources used within a `RDF.Dataset`. ## Examples iex> RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1, EX.Graph}, ...> {EX.S2, EX.p1, EX.O2, EX.Graph}, ...> {EX.S2, EX.p2, RDF.bnode(:bnode)}, ...> {EX.S3, EX.p1, "foo"} ...> ]) |> RDF.Dataset.resources MapSet.new([RDF.iri(EX.S1), RDF.iri(EX.S2), RDF.iri(EX.S3), RDF.iri(EX.O1), RDF.iri(EX.O2), RDF.bnode(:bnode), EX.p1, EX.p2]) """ def resources(%__MODULE__{} = dataset) do Enum.reduce(dataset.graphs, MapSet.new(), fn {_, graph}, resources -> MapSet.union(resources, Graph.resources(graph)) end) end @doc """ All statements within all graphs of a `RDF.Dataset`. When the optional `:filter_star` flag is set to `true` RDF-star statements with a triple as subject or object will be filtered. The default value is `false`. ## Examples iex> RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1, EX.Graph}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) |> ...> RDF.Dataset.statements [{RDF.iri(EX.S1), RDF.iri(EX.p2), RDF.iri(EX.O3)}, {RDF.iri(EX.S2), RDF.iri(EX.p2), RDF.iri(EX.O2)}, {RDF.iri(EX.S1), RDF.iri(EX.p1), RDF.iri(EX.O1), RDF.iri(EX.Graph)}] """ @spec statements(t, keyword) :: [Statement.t()] def statements(%__MODULE__{} = dataset, opts \\ []) do Enum.flat_map(dataset.graphs, fn {nil, graph} -> Graph.triples(graph, opts) {name, graph} -> graph |> Graph.triples(opts) |> Enum.map(fn {s, p, o} -> {s, p, o, name} end) end) end @doc """ Returns if the given `dataset` is empty. Note: You should always prefer this over the use of `Enum.empty?/1` as it is significantly faster. """ @spec empty?(t) :: boolean def empty?(%__MODULE__{} = dataset) do Enum.empty?(dataset.graphs) or dataset |> graphs() |> Enum.all?(&Graph.empty?/1) end @doc """ Checks if the given `input` statements exist within `dataset`. The `graph` option allows to set a different destination graph in which the statements should be checked, ignoring the graph context of given quads or the name of given graphs. ## Examples iex> dataset = RDF.Dataset.new([ ...> {EX.S1, EX.p1, EX.O1, EX.Graph}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) ...> RDF.Dataset.include?(dataset, {EX.S1, EX.p1, EX.O1, EX.Graph}) true """ @spec include?(t, input, keyword) :: boolean def include?(dataset, input, opts \\ []) def include?(%__MODULE__{} = dataset, {_, _, _, graph} = quad, opts), do: do_include?(dataset, destination_graph(opts, graph), quad, opts) def include?(%__MODULE__{} = dataset, %Description{} = description, opts), do: do_include?(dataset, destination_graph(opts), description, opts) def include?(%__MODULE__{} = dataset, %Graph{} = graph, opts), do: do_include?(dataset, destination_graph(opts, graph.name), graph, opts) def include?(%__MODULE__{} = dataset, %__MODULE__{} = other_dataset, opts) do other_dataset |> graphs() |> Enum.all?(&include?(dataset, &1, opts)) end def include?(dataset, input, opts) when is_list(input) or (is_map(input) and not is_struct(input)) do Enum.all?(input, &include?(dataset, &1, opts)) end def include?(dataset, input, opts) when not is_struct(input), do: do_include?(dataset, destination_graph(opts), input, opts) defp do_include?(%__MODULE__{} = dataset, graph_name, input, opts) do if graph = dataset.graphs[graph_name] do Graph.include?(graph, input, opts) else false end end @doc """ Checks if a graph of a `RDF.Dataset` contains statements about the given resource. ## Examples iex> RDF.Dataset.new([{EX.S1, EX.p1, EX.O1}]) |> RDF.Dataset.describes?(EX.S1) true iex> RDF.Dataset.new([{EX.S1, EX.p1, EX.O1}]) |> RDF.Dataset.describes?(EX.S2) false """ @spec describes?(t, Statement.t(), Statement.coercible_graph_name() | nil) :: boolean def describes?(%__MODULE__{} = dataset, subject, graph_context \\ nil) do if graph = dataset.graphs[coerce_graph_name(graph_context)] do Graph.describes?(graph, subject) else false end end @doc """ Returns the names of all graphs of a `RDF.Dataset` containing statements about the given subject. ## Examples iex> dataset = RDF.Dataset.new([ ...> {EX.S1, EX.p, EX.O}, ...> {EX.S2, EX.p, EX.O}, ...> {EX.S1, EX.p, EX.O, EX.Graph1}, ...> {EX.S2, EX.p, EX.O, EX.Graph2}]) ...> RDF.Dataset.who_describes(dataset, EX.S1) [nil, RDF.iri(EX.Graph1)] """ @spec who_describes(t, Statement.coercible_subject()) :: [Graph.t()] def who_describes(%__MODULE__{} = dataset, subject) do subject = coerce_subject(subject) dataset.graphs |> Map.values() |> Stream.filter(&Graph.describes?(&1, subject)) |> Enum.map(& &1.name) end @doc """ Returns a nested map of the native Elixir values of a `RDF.Dataset`. When a `:context` option is given with a `RDF.PropertyMap`, predicates will be mapped to the terms defined in the `RDF.PropertyMap`, if present. ## Examples iex> [ ...> {~I, ~I, ~L"Foo", ~I}, ...> {~I, ~I, RDF.XSD.integer(42), } ...> ] ...> |> RDF.Dataset.new() ...> |> RDF.Dataset.values() %{ "http://example.com/Graph" => %{ "http://example.com/S" => %{"http://example.com/p" => ["Foo"]} }, nil => %{ "http://example.com/S" => %{"http://example.com/p" => [42]} } } """ @spec values(t, keyword) :: map def values(%__MODULE__{} = dataset, opts \\ []) do if property_map = PropertyMap.from_opts(opts) do map(dataset, Statement.default_property_mapping(property_map)) else map(dataset, &Statement.default_term_mapping/1) end end @doc """ Returns a nested map of a `RDF.Dataset` where each element from its quads is mapped with the given function. The function `fun` will receive a tuple `{statement_position, rdf_term}` where `statement_position` is one of the atoms `:subject`, `:predicate`, `:object` or `:graph_name` while `rdf_term` is the RDF term to be mapped. When the given function returns `nil` this will be interpreted as an error and will become the overhaul result of the `map/2` call. ## Examples iex> [ ...> {~I, ~I, ~L"Foo", ~I}, ...> {~I, ~I, RDF.XSD.integer(42), } ...> ] ...> |> RDF.Dataset.new() ...> |> RDF.Dataset.map(fn ...> {:graph_name, graph_name} -> ...> graph_name ...> {:predicate, predicate} -> ...> predicate ...> |> to_string() ...> |> String.split("/") ...> |> List.last() ...> |> String.to_atom() ...> {_, term} -> ...> RDF.Term.value(term) ...> end) %{ ~I => %{ "http://example.com/S" => %{p: ["Foo"]} }, nil => %{ "http://example.com/S" => %{p: [42]} } } """ @spec map(t, Statement.term_mapping()) :: map def map(dataset, fun) def map(%__MODULE__{} = dataset, fun) do Map.new(dataset.graphs, fn {graph_name, graph} -> {fun.({:graph_name, graph_name}), Graph.map(graph, fun)} end) end @doc """ Checks if two `RDF.Dataset`s are equal. Two `RDF.Dataset`s are considered to be equal if they contain the same triples and have the same name. """ @spec equal?(t | any, t | any) :: boolean def equal?(dataset1, dataset2) def equal?(%__MODULE__{} = dataset1, %__MODULE__{} = dataset2) do clear_metadata(dataset1) == clear_metadata(dataset2) end def equal?(_, _), do: false @doc """ Returns the aggregated prefixes of all graphs of `dataset` as a `RDF.PrefixMap`. """ @spec prefixes(t) :: PrefixMap.t() | nil def prefixes(%__MODULE__{} = dataset) do dataset |> RDF.Dataset.graphs() |> Enum.reduce(RDF.PrefixMap.new(), fn graph, prefixes -> if graph.prefixes do RDF.PrefixMap.merge!(prefixes, graph.prefixes, :ignore) else prefixes end end) end defp clear_metadata(%__MODULE__{} = dataset) do %__MODULE__{ dataset | graphs: Map.new(dataset.graphs, fn {name, graph} -> {name, Graph.clear_metadata(graph)} end) } end defimpl Enumerable do alias RDF.Dataset def member?(dataset, statement), do: {:ok, Dataset.include?(dataset, statement)} def count(dataset), do: {:ok, Dataset.statement_count(dataset)} def slice(dataset) do size = Dataset.statement_count(dataset) {:ok, size, &Enumerable.List.slice(Dataset.statements(dataset), &1, &2, size)} end def reduce(dataset, acc, fun) do dataset |> Dataset.statements() |> Enumerable.List.reduce(acc, fun) end end defimpl Collectable do alias RDF.Dataset def into(original) do collector_fun = fn dataset, {:cont, list} when is_list(list) -> Dataset.add(dataset, List.to_tuple(list)) dataset, {:cont, elem} -> Dataset.add(dataset, elem) dataset, :done -> dataset _dataset, :halt -> :ok end {original, collector_fun} end end end