defmodule RDF.Graph do @moduledoc """ A set of RDF triples with an optional name. `RDF.Graph` implements: - Elixir's `Access` behaviour - Elixir's `Enumerable` protocol - Elixir's `Inspect` protocol - the `RDF.Data` protocol """ defstruct name: nil, descriptions: %{}, prefixes: nil, base_iri: nil @behaviour Access alias RDF.{Description, IRI, PrefixMap, PropertyMap} alias RDF.Star.Statement import RDF.{Sigils, Utils} @type graph_description :: %{Statement.subject() => Description.t()} @type t :: %__MODULE__{ name: IRI.t() | nil, descriptions: graph_description, prefixes: PrefixMap.t() | nil, base_iri: IRI.t() | nil } @type input :: Statement.coercible_t() | { Statement.coercible_subject(), Description.input() } | Description.t() | t | %{ Statement.coercible_subject() => %{ Statement.coercible_predicate() => Statement.coercible_object() | [Statement.coercible_object()] } } | list(input) @type update_description_fun :: (Description.t() -> Description.t()) @type get_and_update_description_fun :: (Description.t() -> {Description.t(), input} | :pop) @doc """ Creates an empty unnamed `RDF.Graph`. """ @spec new :: t def new, do: %__MODULE__{} @doc """ Creates an `RDF.Graph`. If a keyword list with options is given an empty graph is created. Otherwise an unnamed graph initialized with the given data is created. See `new/2` for available arguments and the different ways to provide data. ## Examples RDF.Graph.new(name: EX.GraphName) RDF.Graph.new(init: {EX.S, EX.p, EX.O}) RDF.Graph.new({EX.S, EX.p, EX.O}) """ @spec new(input | keyword) :: t def new(data_or_opts) def new(data_or_opts) when is_list(data_or_opts) and length(data_or_opts) != 0 do if Keyword.keyword?(data_or_opts) do {data, options} = Keyword.pop(data_or_opts, :init) new(data, options) else new(data_or_opts, []) end end def new(data), do: new(data, []) @doc """ Creates an `RDF.Graph` initialized with data. The initial RDF triples can be provided - as a single statement tuple - a nested subject-predicate-object map - a `RDF.Description` - a `RDF.Graph` - or a list with any combination of the former Available options: - `name`: the name of the graph to be created - `prefixes`: some prefix mappings which should be stored alongside the graph and will be used for example when serializing in a format with prefix support - `base_iri`: a base IRI which should be stored alongside the graph and will be used for example when serializing in a format with base IRI support - `init`: some data with which the graph should be initialized; the data can be provided in any form accepted by `add/3` and above that also with a function returning the initialization data in any of these forms ## Examples RDF.Graph.new({EX.S, EX.p, EX.O}) RDF.Graph.new({EX.S, EX.p, EX.O}, name: EX.GraphName) RDF.Graph.new({EX.S, EX.p, [EX.O1, EX.O2]}) RDF.Graph.new([{EX.S1, EX.p1, EX.O1}, {EX.S2, EX.p2, EX.O2}]) RDF.Graph.new(RDF.Description.new(EX.S, EX.P, EX.O)) RDF.Graph.new([graph, description, triple]) RDF.Graph.new({EX.S, EX.p, EX.O}, name: EX.GraphName, base_iri: EX.base) """ @spec new(input, keyword) :: t def new(data, opts) def new(%__MODULE__{} = graph, opts) do %__MODULE__{graph | name: opts |> Keyword.get(:name) |> RDF.coerce_graph_name()} |> add_prefixes(Keyword.get(opts, :prefixes)) |> set_base_iri(Keyword.get(opts, :base_iri)) end def new(data, opts) do new() |> new(opts) |> init(data, opts) end defp init(graph, nil, _), do: graph defp init(graph, fun, opts) when is_function(fun), do: add(graph, fun.(), opts) defp init(graph, data, opts), do: add(graph, data, opts) @doc """ Removes all triples from `graph`. This function is useful for getting an empty graph based on the settings of another graph, as this function keeps graph name, base IRI and default prefixes as they are and just removes the triples. """ @spec clear(t) :: t def clear(%__MODULE__{} = graph) do %__MODULE__{graph | descriptions: %{}} end @doc """ Returns the graph name IRI of `graph`. """ @spec name(t) :: Statement.graph_name() def name(%__MODULE__{} = graph), do: graph.name @doc """ Changes the graph name of `graph`. """ @spec change_name(t, Statement.coercible_graph_name()) :: t def change_name(%__MODULE__{} = graph, new_name) do %__MODULE__{graph | name: RDF.coerce_graph_name(new_name)} end @doc """ Adds triples to a `RDF.Graph`. The `input` can be provided - as a single statement tuple - a nested subject-predicate-object map - a `RDF.Description` - a `RDF.Graph` - or a list with any combination of the former When the statements to be added are given as another `RDF.Graph`, the graph name must not match graph name of the graph to which the statements are added. As opposed to that, `RDF.Data.merge/2` will produce a `RDF.Dataset` containing both graphs. Also when the statements to be added are given as another `RDF.Graph`, the prefixes of this graph will be added. In case of conflicting prefix mappings the original prefix from `graph` will be kept. RDF* annotations to be added to all of given statements can be specified with the `:annotate` keyword option and predicate-objects pairs as a tuple, list of tuples or a map. """ @spec add(t, input, keyword) :: t def add(graph, input, opts \\ []) def add(%__MODULE__{} = graph, {subject, predications}, opts), do: do_add(graph, RDF.coerce_subject(subject), predications, opts) def add(%__MODULE__{} = graph, {subject, _, _} = triple, opts), do: do_add(graph, RDF.coerce_subject(subject), triple, opts) def add(graph, {subject, predicate, object, _}, opts), do: add(graph, {subject, predicate, object}, opts) def add(%__MODULE__{} = graph, %Description{} = description, opts) do if Description.count(description) > 0 do do_add(graph, description.subject, description, opts) else graph end end def add(graph, %__MODULE__{descriptions: descriptions, prefixes: prefixes}, opts) do # normalize the annotations here, so we don't have to do this repeatedly in do_add/4 opts = if annotation = Keyword.get(opts, :annotate) do Keyword.put(opts, :annotate, normalize_annotation(annotation)) else opts end graph = Enum.reduce(descriptions, graph, fn {_, description}, graph -> add(graph, description, opts) end) if prefixes do add_prefixes(graph, prefixes, :ignore) else graph end end if Version.match?(System.version(), "~> 1.10") do def add(graph, input, opts) when is_list(input) or (is_map(input) and not is_struct(input)) do Enum.reduce(input, graph, &add(&2, &1, opts)) end else def add(_, %_{}, _), do: raise(ArgumentError, "structs are not allowed as input") def add(graph, input, opts) when is_list(input) or is_map(input) do Enum.reduce(input, graph, &add(&2, &1, opts)) end end defp do_add(%__MODULE__{descriptions: descriptions} = graph, subject, statements, opts) do %__MODULE__{ graph | descriptions: lazy_map_update( descriptions, subject, # when new: create and initialize description with statements fn -> Description.new(subject, Keyword.put(opts, :init, statements)) end, # when update: merge statements description fn description -> Description.add(description, statements, opts) end ) } |> add_annotations(subject, statements, opts) end defp add_annotations(graph, subject, statements, opts) do if annotation = Keyword.get(opts, :annotate) |> normalize_annotation() do Description.new(subject, init: statements) |> Enum.reduce(graph, &add(&2, Description.change_subject(annotation, &1))) else graph end end defp normalize_annotation(nil), do: nil defp normalize_annotation(%Description{} = annotation), do: annotation defp normalize_annotation(annotation), do: Description.new(~B, init: annotation) @doc """ Adds statements to a `RDF.Graph` overwriting existing statements with the subjects given in the `input` data. When the statements to be added are given as another `RDF.Graph`, the prefixes of this graph will be added. In case of conflicting prefix mappings the original prefix from `graph` will be kept. RDF* annotations to be added to all of given statements can be specified with the `:annotate` keyword option and predicate-objects pairs as a tuple, list of tuples or a map. As with the actual asserted statements, the annotation will overwrite existing annotations. ## Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) ...> |> RDF.Graph.put([{EX.S1, EX.P3, EX.O3}]) RDF.Graph.new([{EX.S1, EX.P3, EX.O3}, {EX.S2, EX.P2, EX.O2}]) """ @spec put(t, input, keyword) :: t def put(graph, input, opts \\ []) def put(%__MODULE__{} = graph, %__MODULE__{} = input, opts) do graph = %__MODULE__{ graph | descriptions: Enum.reduce( input.descriptions, graph.descriptions, fn {subject, description}, descriptions -> Map.put(descriptions, subject, description) end ) } if input.prefixes do add_prefixes(graph, input.prefixes, :ignore) else graph end |> put_annotations(input, opts) end def put(%__MODULE__{} = graph, input, opts) do put(graph, new() |> add(input, Keyword.delete_first(opts, :annotate)), opts) end defp put_annotations(graph, input, opts) do if annotation = Keyword.get(opts, :annotate) |> normalize_annotation() do Enum.reduce(input, graph, &put(&2, Description.change_subject(annotation, &1))) else graph end end @doc """ Adds statements to a `RDF.Graph` and overwrites all existing statements with the same subject-predicate combinations given in the `input` data. When the statements to be added are given as another `RDF.Graph`, the prefixes of this graph will be added. In case of conflicting prefix mappings the original prefix from `graph` will be kept. RDF* annotations to be added to all of given statements can be specified with the `:annotate` keyword option and predicate-objects pairs as a tuple, list of tuples or a map. All exiting annotations of the asserted statements will be overwritten. ## Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) ...> |> RDF.Graph.put_properties([{EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}]) RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S1, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O3}]) """ @spec put_properties(t, input, keyword) :: t def put_properties(graph, input, opts \\ []) def put_properties(%__MODULE__{} = graph, %__MODULE__{} = input, opts) do graph = %__MODULE__{ graph | descriptions: Enum.reduce( input.descriptions, graph.descriptions, fn {subject, description}, descriptions -> Map.update( descriptions, subject, description, fn current -> Description.put(current, description, opts) end ) end ) } if input.prefixes do add_prefixes(graph, input.prefixes, :ignore) else graph end |> put_annotations(input, opts) end def put_properties(%__MODULE__{} = graph, input, opts) do put_properties(graph, new() |> add(input, Keyword.delete_first(opts, :annotate)), opts) end @doc """ Deletes statements from a `RDF.Graph`. When the statements to be deleted are given as another `RDF.Graph`, the graph name must not match graph name of the graph from which the statements are deleted. If you want to delete only statements with matching graph names, you can use `RDF.Data.delete/2`. The optional `:delete_annotations` keyword option allows to set which of annotations of the deleted statements should be deleted also. Any of the possible values of `delete_annotations/3` can be provided here. By default no annotations of the deleted statements will be removed. """ @spec delete(t, input, keyword) :: t def delete(graph, input, opts \\ []) def delete(%__MODULE__{} = graph, {subject, _, _} = triple, opts), do: do_delete(graph, RDF.coerce_subject(subject), triple, opts) def delete(%__MODULE__{} = graph, {subject, predications}, opts), do: do_delete(graph, RDF.coerce_subject(subject), predications, opts) def delete(graph, {subject, predicate, object, _}, opts), do: delete(graph, {subject, predicate, object}, opts) def delete(%__MODULE__{} = graph, %Description{} = description, opts), do: do_delete(graph, description.subject, description, opts) def delete(%__MODULE__{} = graph, %__MODULE__{} = input, opts) do Enum.reduce(input.descriptions, graph, fn {_, description}, graph -> delete(graph, description, opts) end) end if Version.match?(System.version(), "~> 1.10") do def delete(%__MODULE__{} = graph, input, opts) when is_list(input) or (is_map(input) and not is_struct(input)) do Enum.reduce(input, graph, &delete(&2, &1, opts)) end else def delete(_, %_{}, _), do: raise(ArgumentError, "structs are not allowed as input") def delete(%__MODULE__{} = graph, input, opts) when is_list(input) or is_map(input) do Enum.reduce(input, graph, &delete(&2, &1, opts)) end end defp do_delete(%__MODULE__{descriptions: descriptions} = graph, subject, input, opts) do if description = descriptions[subject] do new_description = Description.delete(description, input, opts) %__MODULE__{ graph | descriptions: if Enum.empty?(new_description) do Map.delete(descriptions, subject) else Map.put(descriptions, subject, new_description) end } else graph end |> do_delete_delete_annotations(subject, input, opts) end defp do_delete_delete_annotations(graph, subject, statements, opts) do if delete_annotations = Keyword.get(opts, :delete_annotations, false) do delete_annotations(graph, Description.new(subject, init: statements), delete_annotations) else graph end end @doc """ Deletes RDF-star annotations of a given set of statements. The `statements` can be given in any input form (see `add/3`). If `true` is given as the third argument or is `delete_annotations/2` is used, all annotations of the given `statements` are deleted. If a single predicate or list of predicates is given only statements with these predicates from the annotations of the given `statements` are deleted. """ @spec delete_annotations( t, input, boolean | Statement.coercible_predicate() | [Statement.coercible_predicate()] ) :: t def delete_annotations(graph, statements, delete \\ true) def delete_annotations(graph, _, false), do: graph def delete_annotations(graph, statements, true) do delete_descriptions(graph, statements |> new() |> triples()) end def delete_annotations(graph, statements, predicates) do statements |> new() |> Enum.reduce(graph, fn triple, graph -> update(graph, triple, &Description.delete_predicates(&1, predicates)) end) end @doc """ Deletes all statements with the given `subjects`. If `subjects` contains subjects that are not in `graph`, they're simply ignored. The optional `:delete_annotations` keyword option allows to set which of annotations of the deleted statements should be deleted also. Any of the possible values of `delete_annotations/3` can be provided here. By default no annotations of the deleted statements will be removed. """ @spec delete_descriptions( t, Statement.coercible_subject() | [Statement.coercible_subject()], keyword ) :: t def delete_descriptions(graph, subjects, opts \\ []) def delete_descriptions(%__MODULE__{} = graph, subjects, opts) when is_list(subjects) do Enum.reduce(subjects, graph, &delete_descriptions(&2, &1, opts)) end def delete_descriptions(%__MODULE__{} = graph, subject, opts) do case Map.pop(graph.descriptions, RDF.coerce_subject(subject)) do {nil, _} -> graph {deleted_description, descriptions} -> %__MODULE__{graph | descriptions: descriptions} |> delete_annotations(deleted_description, Keyword.get(opts, :delete_annotations, false)) end end defdelegate delete_subjects(graph, subjects), to: __MODULE__, as: :delete_descriptions defdelegate delete_subjects(graph, subjects, opts), to: __MODULE__, as: :delete_descriptions @doc """ Updates the description of the `subject` in `graph` with the given function. If `subject` is present in `graph` with `description` as description, `fun` is invoked with argument `description` and its result is used as the new description of `subject`. If `subject` is not present in `graph`, `initial` is inserted as the description of `subject`. If no `initial` value is given, the `graph` remains unchanged. If `nil` is returned by `fun`, the respective description will be removed from `graph`. The initial value and the returned objects by the update function will be tried te coerced to proper RDF descriptions before added. If the initial or returned description is a `RDF.Description` with another subject, the respective statements are added with `subject` as subject. ## Examples iex> RDF.Graph.new({EX.S, EX.p, EX.O}) ...> |> RDF.Graph.update(EX.S, ...> fn description -> Description.add(description, {EX.p, EX.O2}) ...> end) RDF.Graph.new([{EX.S, EX.p, EX.O}, {EX.S, EX.p, EX.O2}]) iex> RDF.Graph.new({EX.S, EX.p, EX.O}) ...> |> RDF.Graph.update(EX.S, ...> fn _ -> Description.new(EX.S2, init: {EX.p2, EX.O2}) ...> end) RDF.Graph.new([{EX.S, EX.p2, EX.O2}]) iex> RDF.Graph.new() ...> |> RDF.Graph.update(EX.S, Description.new(EX.S, init: {EX.p, EX.O}), ...> fn description -> Description.add(description, {EX.p, EX.O2}) ...> end) RDF.Graph.new([{EX.S, EX.p, EX.O}]) """ @spec update( t, Statement.coercible_subject(), Description.input() | nil, update_description_fun ) :: t def update(%__MODULE__{} = graph, subject, initial \\ nil, fun) do subject = RDF.coerce_subject(subject) case get(graph, subject) do nil -> if initial do add(graph, Description.new(subject, init: initial)) else graph end description -> description |> fun.() |> case do nil -> delete_descriptions(graph, subject) new_description -> graph |> delete_descriptions(subject) |> add(Description.new(subject, init: new_description)) end end end @doc """ Fetches the description of the given subject. When the subject can not be found `:error` is returned. ## Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) ...> |> RDF.Graph.fetch(EX.S1) {:ok, RDF.Description.new(EX.S1, init: {EX.P1, EX.O1})} iex> RDF.Graph.new() |> RDF.Graph.fetch(EX.foo) :error """ @impl Access @spec fetch(t, Statement.coercible_subject()) :: {:ok, Description.t()} | :error def fetch(%__MODULE__{} = graph, subject) do Access.fetch(graph.descriptions, RDF.coerce_subject(subject)) end @doc """ Gets the description of the given subject. When the subject can not be found the optionally given default value or `nil` is returned. ## Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) ...> |> RDF.Graph.get(EX.S1) RDF.Description.new(EX.S1, init: {EX.P1, EX.O1}) iex> RDF.Graph.new() |> RDF.Graph.get(EX.Foo) nil iex> RDF.Graph.new() |> RDF.Graph.get(EX.Foo, :bar) :bar """ @spec get(t, Statement.coercible_subject(), Description.t() | nil) :: Description.t() | nil def get(%__MODULE__{} = graph, subject, default \\ nil) do case fetch(graph, subject) do {:ok, value} -> value :error -> default end end defdelegate description(graph, subject), to: __MODULE__, as: :get @doc """ All `RDF.Description`s within a `RDF.Graph`. """ @spec descriptions(t) :: [Description.t()] def descriptions(%__MODULE__{} = graph) do Map.values(graph.descriptions) end @doc """ Gets and updates the description of the given subject, in a single pass. Invokes the passed function on the `RDF.Description` of the given subject; this function should return either `{description_to_return, new_description}` or `:pop`. If the passed function returns `{description_to_return, new_description}`, the return value of `get_and_update` is `{description_to_return, new_graph}` where `new_graph` is the input `Graph` updated with `new_description` for the given subject. If the passed function returns `:pop` the description for the given subject is removed and a `{removed_description, new_graph}` tuple gets returned. ## Examples iex> RDF.Graph.new({EX.S, EX.P, EX.O}) ...> |> RDF.Graph.get_and_update(EX.S, fn current_description -> ...> {current_description, {EX.P, EX.NEW}} ...> end) {RDF.Description.new(EX.S, init: {EX.P, EX.O}), RDF.Graph.new({EX.S, EX.P, EX.NEW})} """ @impl Access @spec get_and_update(t, Statement.coercible_subject(), get_and_update_description_fun) :: {Description.t(), input} def get_and_update(%__MODULE__{} = graph, subject, fun) do subject = RDF.coerce_subject(subject) case fun.(get(graph, subject)) do {old_description, new_description} -> {old_description, put(graph, {subject, new_description})} :pop -> pop(graph, subject) other -> raise "the given function must return a two-element tuple or :pop, got: #{inspect(other)}" end end @doc """ Pops an arbitrary triple from a `RDF.Graph`. """ @spec pop(t) :: {Statement.t() | nil, t} def pop(graph) def pop(%__MODULE__{descriptions: descriptions} = graph) when descriptions == %{}, do: {nil, graph} def pop(%__MODULE__{descriptions: descriptions} = graph) do # TODO: Find a faster way ... [{subject, description}] = Enum.take(descriptions, 1) {triple, popped_description} = Description.pop(description) popped = if Enum.empty?(popped_description), do: descriptions |> Map.delete(subject), else: descriptions |> Map.put(subject, popped_description) {triple, %__MODULE__{graph | descriptions: popped}} end @doc """ Pops the description of the given subject. When the subject can not be found the optionally given default value or `nil` is returned. ## Examples iex> RDF.Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) ...> |> RDF.Graph.pop(EX.S1) {RDF.Description.new(EX.S1, init: {EX.P1, EX.O1}), RDF.Graph.new({EX.S2, EX.P2, EX.O2})} iex> RDF.Graph.new({EX.S, EX.P, EX.O}) |> RDF.Graph.pop(EX.Missing) {nil, RDF.Graph.new({EX.S, EX.P, EX.O})} """ @impl Access @spec pop(t, Statement.coercible_subject()) :: {Description.t() | nil, t} def pop(%__MODULE__{} = graph, subject) do case Access.pop(graph.descriptions, RDF.coerce_subject(subject)) do {nil, _} -> {nil, graph} {description, new_descriptions} -> {description, %__MODULE__{graph | descriptions: new_descriptions}} end end @doc """ The number of subjects within a `RDF.Graph`. ## Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) ...> |> RDF.Graph.subject_count() 2 """ @spec subject_count(t) :: non_neg_integer def subject_count(%__MODULE__{} = graph) do Enum.count(graph.descriptions) end @doc """ The number of statements within a `RDF.Graph`. ## Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) ...> |> RDF.Graph.statement_count() 3 """ @spec statement_count(t) :: non_neg_integer def statement_count(%__MODULE__{} = graph) do Enum.reduce(graph.descriptions, 0, fn {_subject, description}, count -> count + Description.count(description) end) end defdelegate triple_count(graph), to: __MODULE__, as: :statement_count @doc """ The set of all subjects used in the statements within a `RDF.Graph`. ## Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) ...> |> RDF.Graph.subjects() MapSet.new([RDF.iri(EX.S1), RDF.iri(EX.S2)]) """ def subjects(%__MODULE__{} = graph) do graph.descriptions |> Map.keys() |> MapSet.new() end @doc """ The set of all properties used in the predicates of the statements within a `RDF.Graph`. ## Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) ...> |> RDF.Graph.predicates() MapSet.new([EX.p1, EX.p2]) """ def predicates(%__MODULE__{} = graph) do Enum.reduce(graph.descriptions, MapSet.new(), fn {_, description}, acc -> description |> Description.predicates() |> MapSet.union(acc) end) end @doc """ The set of all resources used in the objects within a `RDF.Graph`. Note: This function does collect only IRIs and BlankNodes, not Literals. ## Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S3, EX.p1, EX.O2}, ...> {EX.S4, EX.p2, RDF.bnode(:bnode)}, ...> {EX.S5, EX.p3, "foo"}]) ...> |> RDF.Graph.objects() MapSet.new([RDF.iri(EX.O1), RDF.iri(EX.O2), RDF.bnode(:bnode)]) """ def objects(%__MODULE__{} = graph) do Enum.reduce(graph.descriptions, MapSet.new(), fn {_, description}, acc -> description |> Description.objects() |> MapSet.union(acc) end) end @doc """ The set of all resources used within a `RDF.Graph`. ## Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p1, EX.O2}, ...> {EX.S2, EX.p2, RDF.bnode(:bnode)}, ...> {EX.S3, EX.p1, "foo"}]) ...> |> RDF.Graph.resources() MapSet.new([RDF.iri(EX.S1), RDF.iri(EX.S2), RDF.iri(EX.S3), RDF.iri(EX.O1), RDF.iri(EX.O2), RDF.bnode(:bnode), EX.p1, EX.p2]) """ def resources(graph = %__MODULE__{} = graph) do Enum.reduce(graph.descriptions, MapSet.new(), fn {_, description}, acc -> description |> Description.resources() |> MapSet.union(acc) end) |> MapSet.union(subjects(graph)) end @doc """ The list of all statements within a `RDF.Graph`. ## Examples iex> RDF.Graph.new([ ...> {EX.S1, EX.p1, EX.O1}, ...> {EX.S2, EX.p2, EX.O2}, ...> {EX.S1, EX.p2, EX.O3}]) ...> |> RDF.Graph.triples() [{RDF.iri(EX.S1), RDF.iri(EX.p1), RDF.iri(EX.O1)}, {RDF.iri(EX.S1), RDF.iri(EX.p2), RDF.iri(EX.O3)}, {RDF.iri(EX.S2), RDF.iri(EX.p2), RDF.iri(EX.O2)}] """ @spec triples(t) :: [Statement.t()] def triples(%__MODULE__{} = graph, opts \\ []) do if Keyword.get(opts, :filter_star, false) do Enum.flat_map(graph.descriptions, fn {subject, _} when is_tuple(subject) -> [] {_, description} -> Description.triples(description, opts) end) else Enum.flat_map(graph.descriptions, fn {_, description} -> Description.triples(description, opts) end) end end defdelegate statements(graph, opts \\ []), to: __MODULE__, as: :triples @doc """ Checks if the given `input` statements exist within `graph`. """ @spec include?(t, input, keyword) :: boolean def include?(graph, input, opts \\ []) def include?(%__MODULE__{} = graph, {subject, _, _} = triple, opts), do: do_include?(graph, RDF.coerce_subject(subject), triple, opts) def include?(graph, {subject, predicate, object, _}, opts), do: include?(graph, {subject, predicate, object}, opts) def include?(%__MODULE__{} = graph, {subject, predications}, opts), do: do_include?(graph, RDF.coerce_subject(subject), predications, opts) def include?(%__MODULE__{} = graph, %Description{subject: subject} = description, opts), do: do_include?(graph, subject, description, opts) def include?(graph, %__MODULE__{} = other_graph, opts) do other_graph |> descriptions() |> Enum.all?(&include?(graph, &1, opts)) end if Version.match?(System.version(), "~> 1.10") do def include?(graph, input, opts) when is_list(input) or (is_map(input) and not is_struct(input)) do Enum.all?(input, &include?(graph, &1, opts)) end else def include?(_, %_{}, _), do: raise(ArgumentError, "structs are not allowed as input") def include?(graph, input, opts) when is_list(input) or is_map(input) do Enum.all?(input, &include?(graph, &1, opts)) end end defp do_include?(%__MODULE__{descriptions: descriptions}, subject, input, opts) do if description = descriptions[subject] do Description.include?(description, input, opts) else false end end @doc """ Checks if a `RDF.Graph` contains statements about the given resource. ## Examples iex> RDF.Graph.new([{EX.S1, EX.p1, EX.O1}]) |> RDF.Graph.describes?(EX.S1) true iex> RDF.Graph.new([{EX.S1, EX.p1, EX.O1}]) |> RDF.Graph.describes?(EX.S2) false """ @spec describes?(t, Statement.coercible_subject()) :: boolean def describes?(%__MODULE__{} = graph, subject) do Map.has_key?(graph.descriptions, RDF.coerce_subject(subject)) end @doc """ Creates a graph from another one by limiting its statements to those using one of the given `subjects`. If `subjects` contains IRIs that are not used in the `graph`, they're simply ignored. The optional `properties` argument allows to limit also properties of the subject descriptions. If `nil` is passed as the `subjects`, the subjects will not be limited. """ @spec take( t, [Statement.coercible_subject()] | Enum.t() | nil, [Statement.coercible_predicate()] | Enum.t() | nil ) :: t def take(graph, subjects, properties \\ nil) def take(%__MODULE__{} = graph, nil, nil), do: graph def take(%__MODULE__{descriptions: descriptions} = graph, subjects, nil) do %__MODULE__{ graph | descriptions: Map.take(descriptions, Enum.map(subjects, &RDF.coerce_subject/1)) } end def take(%__MODULE__{} = graph, subjects, properties) do graph = take(graph, subjects, nil) %__MODULE__{ graph | descriptions: Map.new(graph.descriptions, fn {subject, description} -> {subject, Description.take(description, properties)} end) } end @doc """ Execute the given `query` against the given `graph`. This is just a convenience delegator function to `RDF.Query.execute!/3` with the first two arguments swapped so it can be used in a pipeline on a `RDF.Graph`. See `RDF.Query.execute/3` and `RDF.Query.execute!/3` for more information and examples. """ def query(graph, query, opts \\ []) do RDF.Query.execute!(query, graph, opts) end @doc """ Returns a `Stream` for the execution of the given `query` against the given `graph`. This is just a convenience delegator function to `RDF.Query.stream!/3` with the first two arguments swapped so it can be used in a pipeline on a `RDF.Graph`. See `RDF.Query.stream/3` and `RDF.Query.stream!/3` for more information and examples. """ def query_stream(graph, query, opts \\ []) do RDF.Query.stream!(query, graph, opts) end @doc """ Returns a nested map of the native Elixir values of a `RDF.Graph`. When a `:context` option is given with a `RDF.PropertyMap`, predicates will be mapped to the terms defined in the `RDF.PropertyMap`, if present. ## Examples iex> RDF.Graph.new([ ...> {~I, ~I, ~L"Foo"}, ...> {~I, ~I, RDF.XSD.integer(42)} ...> ]) ...> |> RDF.Graph.values() %{ "http://example.com/S1" => %{"http://example.com/p" => ["Foo"]}, "http://example.com/S2" => %{"http://example.com/p" => [42]} } iex> RDF.Graph.new([ ...> {~I, ~I, ~L"Foo"}, ...> {~I, ~I, RDF.XSD.integer(42)} ...> ]) ...> |> RDF.Graph.values(context: [p: ~I]) %{ "http://example.com/S1" => %{p: ["Foo"]}, "http://example.com/S2" => %{p: [42]} } """ @spec values(t, keyword) :: map def values(%__MODULE__{} = graph, opts \\ []) do if property_map = PropertyMap.from_opts(opts) do map(graph, RDF.Statement.default_property_mapping(property_map)) else map(graph, &RDF.Statement.default_term_mapping/1) end end @doc """ Returns a nested map of a `RDF.Graph` where each element from its triples is mapped with the given function. The function `fun` will receive a tuple `{statement_position, rdf_term}` where `statement_position` is one of the atoms `:subject`, `:predicate` or `:object`, while `rdf_term` is the RDF term to be mapped. When the given function returns `nil` this will be interpreted as an error and will become the overhaul result of the `map/2` call. Note: RDF-star statements where the subject or object is a triple will be ignored. ## Examples iex> RDF.Graph.new([ ...> {~I, ~I, ~L"Foo"}, ...> {~I, ~I, RDF.XSD.integer(42)} ...> ]) ...> |> RDF.Graph.map(fn ...> {:predicate, predicate} -> ...> predicate ...> |> to_string() ...> |> String.split("/") ...> |> List.last() ...> |> String.to_atom() ...> {_, term} -> ...> RDF.Term.value(term) ...> end) %{ "http://example.com/S1" => %{p: ["Foo"]}, "http://example.com/S2" => %{p: [42]} } """ @spec map(t, Statement.term_mapping()) :: map def map(description, fun) def map(%__MODULE__{} = graph, fun) do Enum.reduce(graph.descriptions, %{}, fn {subject, _}, map when is_tuple(subject) -> map {subject, description}, map -> case Description.map(description, fun) do mapped_objects when map_size(mapped_objects) == 0 -> map mapped_objects -> Map.put( map, fun.({:subject, subject}), mapped_objects ) end end) end @doc """ Checks if two `RDF.Graph`s are equal. Two `RDF.Graph`s are considered to be equal if they contain the same triples and have the same name. The prefixes of the graph are irrelevant for equality. """ @spec equal?(t | any, t | any) :: boolean def equal?(graph1, graph2) def equal?(%__MODULE__{} = graph1, %__MODULE__{} = graph2) do clear_metadata(graph1) == clear_metadata(graph2) end def equal?(_, _), do: false @doc """ Returns the prefixes of the given `graph` as a `RDF.PrefixMap`. """ @spec prefixes(t) :: PrefixMap.t() | nil def prefixes(%__MODULE__{} = graph), do: graph.prefixes @doc """ Adds `prefixes` to the given `graph`. The `prefixes` mappings can be given as any structure convertible to a `RDF.PrefixMap`. When a prefix with another mapping already exists it will be overwritten with the new one. This behaviour can be customized by providing a `conflict_resolver` function. See `RDF.PrefixMap.merge/3` for more on that. """ @spec add_prefixes( t, PrefixMap.t() | map | keyword | nil, PrefixMap.conflict_resolver() | nil ) :: t def add_prefixes(graph, prefixes, conflict_resolver \\ nil) def add_prefixes(%__MODULE__{} = graph, nil, _), do: graph def add_prefixes(%__MODULE__{prefixes: nil} = graph, prefixes, _) do %__MODULE__{graph | prefixes: PrefixMap.new(prefixes)} end def add_prefixes(%__MODULE__{} = graph, additions, nil) do add_prefixes(graph, additions, :overwrite) end def add_prefixes(%__MODULE__{prefixes: prefixes} = graph, additions, conflict_resolver) do %__MODULE__{graph | prefixes: PrefixMap.merge!(prefixes, additions, conflict_resolver)} end @doc """ Deletes `prefixes` from the given `graph`. The `prefixes` can be a single prefix or a list of prefixes. Prefixes not in prefixes of the graph are simply ignored. """ @spec delete_prefixes(t, PrefixMap.t()) :: t def delete_prefixes(graph, prefixes) def delete_prefixes(%__MODULE__{prefixes: nil} = graph, _), do: graph def delete_prefixes(%__MODULE__{} = graph, deletions) do %__MODULE__{graph | prefixes: PrefixMap.drop(graph.prefixes, List.wrap(deletions))} end @doc """ Clears all prefixes of the given `graph`. """ @spec clear_prefixes(t) :: t def clear_prefixes(%__MODULE__{} = graph) do %__MODULE__{graph | prefixes: nil} end @doc """ Returns the base IRI of the given `graph`. """ @spec base_iri(t) :: IRI.t() | nil def base_iri(%__MODULE__{} = graph), do: graph.base_iri @doc """ Sets the base IRI of the given `graph`. The `base_iri` can be given as anything accepted by `RDF.IRI.coerce_base/1`. """ @spec set_base_iri(t, IRI.t() | nil) :: t def set_base_iri(graph, base_iri) def set_base_iri(%__MODULE__{} = graph, nil) do %__MODULE__{graph | base_iri: nil} end def set_base_iri(%__MODULE__{} = graph, base_iri) do %__MODULE__{graph | base_iri: IRI.coerce_base(base_iri)} end @doc """ Clears the base IRI of the given `graph`. """ @spec clear_base_iri(t) :: t def clear_base_iri(%__MODULE__{} = graph) do %__MODULE__{graph | base_iri: nil} end @doc """ Clears the base IRI and all prefixes of the given `graph`. """ @spec clear_metadata(t) :: t def clear_metadata(%__MODULE__{} = graph) do graph |> clear_base_iri() |> clear_prefixes() end defimpl Enumerable do alias RDF.Graph def member?(graph, triple), do: {:ok, Graph.include?(graph, triple)} def count(graph), do: {:ok, Graph.statement_count(graph)} if Version.match?(System.version(), "~> 1.10") do def slice(graph) do size = Graph.statement_count(graph) {:ok, size, &Enumerable.List.slice(Graph.triples(graph), &1, &2, size)} end else def slice(_), do: {:error, __MODULE__} end def reduce(graph, acc, fun) do graph |> Graph.triples() |> Enumerable.List.reduce(acc, fun) end end defimpl Collectable do alias RDF.Graph def into(original) do collector_fun = fn graph, {:cont, list} when is_list(list) -> Graph.add(graph, List.to_tuple(list)) graph, {:cont, elem} -> Graph.add(graph, elem) graph, :done -> graph _graph, :halt -> :ok end {original, collector_fun} end end end