defmodule RDF.GraphTest do use RDF.Test.Case doctest RDF.Graph alias RDF.PrefixMap alias RDF.NS.{XSD, RDFS} describe "new" do test "creating an empty unnamed graph" do assert unnamed_graph?(unnamed_graph()) end test "creating an empty graph with a proper graph name" do refute unnamed_graph?(named_graph()) assert named_graph?(named_graph()) end test "creating an empty graph with a blank node as graph name" do assert named_graph(bnode("graph_name")) |> named_graph?(bnode("graph_name")) end test "creating an empty graph with a coercible graph name" do assert named_graph("http://example.com/graph/GraphName") |> named_graph?(iri("http://example.com/graph/GraphName")) assert named_graph(EX.Foo) |> named_graph?(iri(EX.Foo)) end test "creating an unnamed graph with an initial triple" do g = Graph.new({EX.Subject, EX.predicate(), EX.Object}) assert unnamed_graph?(g) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) end test "creating a named graph with an initial triple" do g = Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.GraphName) assert named_graph?(g, iri(EX.GraphName)) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) end test "creating an unnamed graph with a list of initial triples" do g = Graph.new([ {EX.Subject1, EX.predicate1(), EX.Object1}, {EX.Subject2, EX.predicate2(), EX.Object2} ]) assert unnamed_graph?(g) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2}) g = Graph.new({EX.Subject, EX.predicate(), [EX.Object1, EX.Object2]}) assert unnamed_graph?(g) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object2}) end test "creating a named graph with a list of initial triples" do g = Graph.new( [{EX.Subject, EX.predicate1(), EX.Object1}, {EX.Subject, EX.predicate2(), EX.Object2}], name: EX.GraphName ) assert named_graph?(g, iri(EX.GraphName)) assert graph_includes_statement?(g, {EX.Subject, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject, EX.predicate2(), EX.Object2}) g = Graph.new({EX.Subject, EX.predicate(), [EX.Object1, EX.Object2]}, name: EX.GraphName) assert named_graph?(g, iri(EX.GraphName)) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object2}) end test "creating a named graph with an initial description" do g = Description.new(EX.Subject, init: {EX.predicate(), EX.Object}) |> Graph.new(name: EX.GraphName) assert named_graph?(g, iri(EX.GraphName)) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) end test "creating an unnamed graph with an initial description" do g = Description.new(EX.Subject, init: {EX.predicate(), EX.Object}) |> Graph.new() assert unnamed_graph?(g) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) end test "creating an unnamed graph with an empty description" do g = Graph.new(Description.new(EX.Subject)) assert empty_graph?(g) end test "creating a named graph from another graph" do g = Graph.new({EX.Subject, EX.predicate(), EX.Object}) |> Graph.new(name: EX.GraphName) assert named_graph?(g, iri(EX.GraphName)) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) g = Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.OtherGraphName) |> Graph.new(name: EX.GraphName) assert named_graph?(g, iri(EX.GraphName)) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) end test "creating an unnamed graph from another graph" do g = Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object})) assert unnamed_graph?(g) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) g = Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.OtherGraphName)) assert unnamed_graph?(g) assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object}) end test "with prefixes" do assert Graph.new(prefixes: %{ex: EX}) == %Graph{prefixes: PrefixMap.new(ex: EX)} assert Graph.new(prefixes: %{ex: EX}, name: EX.graph_name()) == %Graph{prefixes: PrefixMap.new(ex: EX), name: EX.graph_name()} assert Graph.new({EX.Subject, EX.predicate(), EX.Object}, prefixes: %{ex: EX}) == %Graph{ Graph.new({EX.Subject, EX.predicate(), EX.Object}) | prefixes: PrefixMap.new(ex: EX) } end test "with base_iri" do assert Graph.new(base_iri: EX.base()) == %Graph{base_iri: EX.base()} assert Graph.new(prefixes: %{ex: EX}, base_iri: EX.base()) == %Graph{prefixes: PrefixMap.new(ex: EX), base_iri: EX.base()} assert Graph.new({EX.Subject, EX.predicate(), EX.Object}, base_iri: EX.base()) == %Graph{Graph.new({EX.Subject, EX.predicate(), EX.Object}) | base_iri: EX.base()} end test "creating a graph from another graph takes the prefixes from the other graph, but overwrites if necessary" do prefix_map = PrefixMap.new(ex: EX) g = Graph.new(Graph.new(prefixes: prefix_map)) assert g.prefixes == prefix_map g = Graph.new(Graph.new(prefixes: %{ex: XSD, rdfs: RDFS}), prefixes: prefix_map) assert g.prefixes == PrefixMap.new(ex: EX, rdfs: RDFS) end end test "clear/1" do opts = [name: EX.Graph, base_iri: EX.base(), prefixes: %{ex: EX.prefix()}] assert Graph.new({EX.S, EX.p(), EX.O}, opts) |> Graph.clear() == Graph.new(opts) end test "name/1" do assert Graph.name(graph()) == graph().name end test "change_name/2" do assert Graph.change_name(graph(), EX.NewGraph).name == iri(EX.NewGraph) assert Graph.change_name(named_graph(), nil).name == nil end describe "add/2" do test "a proper triple" do assert Graph.add(graph(), {iri(EX.Subject), EX.predicate(), iri(EX.Object)}) |> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object}) end test "a coerced triple" do assert Graph.add( graph(), {"http://example.com/Subject", EX.predicate(), EX.Object} ) |> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object}) end test "a triple with multiple objects" do g = Graph.add(graph(), {EX.Subject1, EX.predicate1(), [EX.Object1, EX.Object2]}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object2}) end test "a list of triples" do g = Graph.add(graph(), [ {EX.Subject1, EX.predicate1(), EX.Object1}, {EX.Subject1, EX.predicate2(), EX.Object2}, {EX.Subject3, EX.predicate3(), EX.Object3} ]) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2}) assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3}) end test "a graph map" do g = Graph.add(graph(), %{ EX.Subject1 => [{EX.predicate1(), EX.Object1}, {EX.predicate2(), [EX.Object2]}], EX.Subject3 => %{EX.predicate3() => EX.Object3} }) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2}) assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3}) end test "an empty map" do assert Graph.add(graph(), %{}) == graph() end test "a description" do g = Graph.add( graph(), Description.new(EX.Subject1) |> Description.add([ {EX.predicate1(), EX.Object1}, {EX.predicate2(), EX.Object2} ]) ) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2}) g = Graph.add(g, Description.new(EX.Subject1, init: {EX.predicate3(), EX.Object3})) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3(), EX.Object3}) end test "an empty description is ignored" do g = Graph.new() |> Graph.add(Description.new(EX.Subject)) assert empty_graph?(g) end test "a list of descriptions" do g = Graph.add(graph(), [ Description.new(EX.Subject1, init: {EX.predicate1(), EX.Object1}), Description.new(EX.Subject2, init: {EX.predicate2(), EX.Object2}), Description.new(EX.Subject1, init: {EX.predicate3(), EX.Object3}) ]) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3(), EX.Object3}) end test "duplicates are ignored" do g = Graph.add(graph(), {EX.Subject, EX.predicate(), EX.Object}) assert Graph.add(g, {EX.Subject, EX.predicate(), EX.Object}) == g end test "a graph" do g = Graph.add( graph(), Graph.new([ {EX.Subject1, EX.predicate1(), EX.Object1}, {EX.Subject2, EX.predicate2(), EX.Object2}, {EX.Subject3, EX.predicate3(), EX.Object3} ]) ) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2}) assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3}) g = Graph.add( g, Graph.new([ {EX.Subject1, EX.predicate1(), EX.Object2}, {EX.Subject2, EX.predicate4(), EX.Object4} ]) ) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object2}) assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2}) assert graph_includes_statement?(g, {EX.Subject2, EX.predicate4(), EX.Object4}) assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3}) end test "merges the prefixes of another graph" do graph = Graph.new(prefixes: %{xsd: XSD}) |> Graph.add(Graph.new(prefixes: %{rdfs: RDFS})) assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS) end test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do graph = Graph.new(prefixes: %{ex: EX}) |> Graph.add(Graph.new(prefixes: %{ex: XSD})) assert graph.prefixes == PrefixMap.new(ex: EX) end test "preserves the base_iri" do graph = Graph.new() |> Graph.add(Graph.new({EX.Subject, EX.predicate(), EX.Object}, base_iri: EX.base())) assert graph.base_iri == Graph.new().base_iri end test "preserves the name and prefixes when the data provided is not a graph" do graph = Graph.new(name: EX.GraphName, prefixes: %{ex: EX}) |> Graph.add({EX.Subject, EX.predicate(), EX.Object}) assert graph.name == RDF.iri(EX.GraphName) assert graph.prefixes == PrefixMap.new(ex: EX) end test "non-coercible Triple elements are causing an error" do assert_raise RDF.IRI.InvalidError, fn -> Graph.add(graph(), {"not a IRI", EX.predicate(), iri(EX.Object)}) end assert_raise RDF.Literal.InvalidError, fn -> Graph.add(graph(), {EX.Subject, EX.prop(), self()}) end end end describe "put/2" do test "a list of triples" do g = Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |> RDF.Graph.put([ {EX.S1, EX.P2, EX.O3}, {EX.S1, EX.P2, bnode(:foo)}, {EX.S2, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O4} ]) assert Graph.triple_count(g) == 5 assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1}) assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O3}) assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)}) assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O3}) assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O4}) end test "quads" do g = Graph.new([{EX.S1, EX.P1, EX.O}, {EX.S2, EX.P2, EX.O}]) |> RDF.Graph.put([ {EX.S2, EX.P2, bnode(:foo), EX.Graph1}, {EX.S2, EX.P2, EX.O1, EX.Graph2}, {EX.S2, EX.P2, EX.O2, nil}, {EX.S2, EX.P2, EX.O3} ]) assert Graph.triple_count(g) == 5 assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O}) assert graph_includes_statement?(g, {EX.S2, EX.P2, bnode(:foo)}) assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O1}) assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2}) assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O3}) end test "a list subject-predications pairs" do g = Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}]) |> RDF.Graph.put([ {EX.S1, [ {EX.P1, EX.O3}, %{EX.P2 => [EX.O4]} ]} ]) assert Graph.triple_count(g) == 3 assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O3}) assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O4}) assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2}) end test "a map" do g = Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}]) |> Graph.put(%{ EX.S1 => [{EX.p1(), EX.O2}], EX.S2 => %{EX.p1() => EX.O2}, EX.S3 => %{EX.p3() => EX.O3} }) assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O2}) assert graph_includes_statement?(g, {EX.S2, EX.p1(), EX.O2}) assert graph_includes_statement?(g, {EX.S3, EX.p3(), EX.O3}) end test "a description" do g = Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}, {EX.S1, EX.P3, EX.O3}]) |> RDF.Graph.put( Description.new(EX.S1) |> Description.add([{EX.P3, EX.O4}, {EX.P2, bnode(:foo)}]) ) assert Graph.triple_count(g) == 4 assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1}) assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4}) assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)}) assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2}) end test "an empty description is ignored" do g = Graph.new() |> Graph.put(Description.new(EX.Subject)) assert empty_graph?(g) end test "a list of descriptions" do g = Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}, {EX.S1, EX.p3(), EX.O3}]) |> RDF.Graph.put([ EX.p1(EX.S1, EX.O41), EX.p2(EX.S2, EX.O42), EX.p2(EX.S2, EX.O43) ]) assert Graph.triple_count(g) == 4 assert graph_includes_statement?(g, {EX.S1, EX.p3(), EX.O3}) assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O41}) assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O42}) assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O43}) end test "a graph" do g = Graph.new([ {EX.S1, EX.P1, EX.O1}, {EX.S1, EX.P3, EX.O3}, {EX.S2, EX.P2, EX.O2} ]) |> RDF.Graph.put( Graph.new([ {EX.S1, EX.P3, EX.O4}, {EX.S2, EX.P2, bnode(:foo)}, {EX.S3, EX.P3, EX.O3} ]) ) assert Graph.triple_count(g) == 4 assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1}) assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4}) assert graph_includes_statement?(g, {EX.S2, EX.P2, bnode(:foo)}) assert graph_includes_statement?(g, {EX.S3, EX.P3, EX.O3}) end test "merges the prefixes of another graph" do graph = Graph.new(prefixes: %{xsd: XSD}) |> Graph.put(Graph.new(prefixes: %{rdfs: RDFS})) assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS) end test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do graph = Graph.new(prefixes: %{ex: EX}) |> Graph.put(Graph.new(prefixes: %{ex: XSD})) assert graph.prefixes == PrefixMap.new(ex: EX) end test "preserves the name, base_iri and prefixes" do graph = Graph.new(name: EX.GraphName, prefixes: %{ex: EX}, base_iri: EX.base()) |> Graph.put({EX.Subject, EX.predicate(), EX.Object}) assert graph.name == RDF.iri(EX.GraphName) assert graph.prefixes == PrefixMap.new(ex: EX) assert graph.base_iri == EX.base() end end describe "delete/2" do setup do {:ok, graph1: Graph.new({EX.S, EX.p(), EX.O}), graph2: Graph.new({EX.S, EX.p(), [EX.O1, EX.O2]}, name: EX.Graph), graph3: Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, {EX.S2, EX.p2(), EX.O3}, {EX.S3, EX.p3(), [~B, ~L"bar"]} ])} end test "a triple", %{graph1: graph1, graph2: graph2} do assert Graph.delete(Graph.new(), {EX.S, EX.p(), EX.O}) == Graph.new() assert Graph.delete(graph1, {EX.S, EX.p(), EX.O}) == Graph.new() assert Graph.delete(graph2, {EX.S, EX.p(), EX.O1}) == Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph) assert Graph.delete(graph2, {EX.S, EX.p(), EX.O1}) == Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph) end test "a triple with multiple objects", %{graph1: graph1, graph2: graph2} do assert Graph.delete(Graph.new(), {EX.S, EX.p(), [EX.O1, EX.O2]}) == Graph.new() assert Graph.delete(graph1, {EX.S, EX.p(), [EX.O, EX.O2]}) == Graph.new() assert Graph.delete(graph2, {EX.S, EX.p(), [EX.O1, EX.O2]}) == Graph.new(name: EX.Graph) end test "a list of triples", %{graph1: graph1, graph2: graph2, graph3: graph3} do assert Graph.delete(graph1, [{EX.S, EX.p(), EX.O}, {EX.S, EX.p(), EX.O2}]) == Graph.new() assert Graph.delete(graph2, [{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}]) == Graph.new(name: EX.Graph) assert Graph.delete(graph3, [ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, {EX.S2, EX.p2(), EX.O3}, {EX.S3, EX.p3(), ~B} ]) == Graph.new({EX.S3, EX.p3(), ~L"bar"}) end test "a map", %{graph1: graph1, graph2: graph2, graph3: graph3} do assert Graph.delete(graph1, %{EX.S => {EX.p(), [EX.O, EX.O2]}}) == Graph.new() assert Graph.delete(graph2, %{EX.S => {EX.p(), [EX.O1, EX.O2]}}) == Graph.new(name: EX.Graph) assert Graph.delete( graph3, %{ EX.S1 => %{EX.p1() => [EX.O1, EX.O2]}, EX.S2 => %{EX.p2() => EX.O3}, EX.S3 => %{EX.p3() => ~B} } ) == Graph.new({EX.S3, EX.p3(), ~L"bar"}) end test "a description", %{graph1: graph1, graph2: graph2, graph3: graph3} do assert Graph.delete( graph1, Description.new(EX.S) |> Description.add([{EX.p(), EX.O}, {EX.p2(), EX.O2}]) ) == Graph.new() assert Graph.delete(graph2, Description.new(EX.S, init: {EX.p(), [EX.O1, EX.O2]})) == Graph.new(name: EX.Graph) assert Graph.delete(graph3, Description.new(EX.S3, init: {EX.p3(), ~B})) == Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, {EX.S2, EX.p2(), EX.O3}, {EX.S3, EX.p3(), [~L"bar"]} ]) end test "a graph", %{graph1: graph1, graph2: graph2, graph3: graph3} do assert Graph.delete(graph1, graph2) == graph1 assert Graph.delete(graph1, graph1) == Graph.new() assert Graph.delete( graph2, Graph.new({EX.S, EX.p(), [EX.O1, EX.O3]}, name: EX.Graph) ) == Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph) assert Graph.delete( graph3, Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, {EX.S2, EX.p2(), EX.O3}, {EX.S3, EX.p3(), ~B} ]) ) == Graph.new({EX.S3, EX.p3(), ~L"bar"}) end test "preserves the name and prefixes" do graph = Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.GraphName, prefixes: %{ex: EX}) |> Graph.delete({EX.Subject, EX.predicate(), EX.Object}) assert graph.name == RDF.iri(EX.GraphName) assert graph.prefixes == PrefixMap.new(ex: EX) end end describe "delete_descriptions/2" do setup do {:ok, graph1: Graph.new({EX.S, EX.p(), [EX.O1, EX.O2]}, name: EX.Graph), graph2: Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, {EX.S2, EX.p2(), EX.O3}, {EX.S3, EX.p3(), [~B, ~L"bar"]} ])} end test "a single subject", %{graph1: graph1} do assert Graph.delete_descriptions(graph1, EX.Other) == graph1 assert Graph.delete_descriptions(graph1, EX.S) == Graph.new(name: EX.Graph) end test "a list of subjects", %{graph1: graph1, graph2: graph2} do assert Graph.delete_descriptions(graph1, [EX.S, EX.Other]) == Graph.new(name: EX.Graph) assert Graph.delete_descriptions(graph2, [EX.S1, EX.S2, EX.S3]) == Graph.new() end end describe "update/4" do test "a description returned from the update function becomes new description of the subject" do old_description = Description.new(EX.S2, init: {EX.p2(), EX.O3}) new_description = Description.new(EX.S2, init: {EX.p(), EX.O}) assert Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, old_description ]) |> Graph.update(EX.S2, fn ^old_description -> new_description end) == Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, new_description ]) end test "a description with another subject returned from the update function becomes new description of the subject" do old_description = Description.new(EX.S2, init: {EX.p2(), EX.O3}) new_description = Description.new(EX.S2, init: {EX.p(), EX.O}) assert Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, old_description ]) |> Graph.update( EX.S2, fn ^old_description -> Description.new(EX.S3, init: new_description) end ) == Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, new_description ]) end test "a value returned from the update function becomes new coerced description of the subject" do old_description = Description.new(EX.S2, init: {EX.p2(), EX.O3}) new_description = {EX.p(), [EX.O1, EX.O2]} assert Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, old_description ]) |> Graph.update( EX.S2, fn ^old_description -> new_description end ) == Graph.new([ {EX.S1, EX.p1(), [EX.O1, EX.O2]}, Description.new(EX.S2) |> Description.add(new_description) ]) end test "returning nil from the update function causes a removal of the description" do assert Graph.new({EX.S, EX.p(), EX.O}) |> Graph.update(EX.S, fn _ -> nil end) == Graph.new() end test "when the property is not present the initial object value is added for the predicate and the update function not called" do fun = fn _ -> raise "should not be called" end assert Graph.new() |> Graph.update(EX.S, {EX.P, EX.O}, fun) == Graph.new({EX.S, EX.P, EX.O}) assert Graph.new() |> Graph.update(EX.S, fun) == Graph.new() end end test "pop" do assert Graph.pop(Graph.new()) == {nil, Graph.new()} {triple, graph} = Graph.new({EX.S, EX.p(), EX.O}) |> Graph.pop() assert {iri(EX.S), iri(EX.p()), iri(EX.O)} == triple assert Enum.count(graph.descriptions) == 0 {{subject, predicate, _}, graph} = Graph.new([{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}]) |> Graph.pop() assert {subject, predicate} == {iri(EX.S), iri(EX.p())} assert Enum.count(graph.descriptions) == 1 {{subject, _, _}, graph} = Graph.new([{EX.S, EX.p1(), EX.O1}, {EX.S, EX.p2(), EX.O2}]) |> Graph.pop() assert subject == iri(EX.S) assert Enum.count(graph.descriptions) == 1 end test "include?/2" do graph = Graph.new([ {EX.S1, EX.p(), EX.O1}, {EX.S2, EX.p(), EX.O2} ]) assert Graph.include?(graph, {EX.S1, EX.p(), EX.O1}) assert Graph.include?(graph, {EX.S1, EX.p(), EX.O1, EX.Graph}) assert Graph.include?(graph, [{EX.S1, EX.p(), EX.O1}]) assert Graph.include?(graph, [ {EX.S1, EX.p(), EX.O1}, {EX.S2, EX.p(), EX.O2} ]) refute Graph.include?(graph, [ {EX.S1, EX.p(), EX.O1}, {EX.S2, EX.p(), EX.O3} ]) assert Graph.include?(graph, EX.S1 |> EX.p(EX.O1)) assert Graph.include?(graph, Graph.new(EX.S1 |> EX.p(EX.O1))) assert Graph.include?(graph, graph) end test "values/1" do assert Graph.new() |> Graph.values() == %{} assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}]) |> Graph.values() == %{ RDF.Term.value(EX.s1()) => %{RDF.Term.value(EX.p()) => [RDF.Term.value(EX.o1())]}, RDF.Term.value(EX.s2()) => %{RDF.Term.value(EX.p()) => [RDF.Term.value(EX.o2())]} } end test "values/2" do mapping = fn {:predicate, predicate} -> predicate |> to_string() |> String.split("/") |> List.last() |> String.to_atom() {_, term} -> RDF.Term.value(term) end assert Graph.new() |> Graph.values(mapping) == %{} assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}]) |> Graph.values(mapping) == %{ RDF.Term.value(EX.s1()) => %{p: [RDF.Term.value(EX.o1())]}, RDF.Term.value(EX.s2()) => %{p: [RDF.Term.value(EX.o2())]} } end describe "take/2" do test "with a non-empty subject list" do assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}]) |> Graph.take([EX.s2(), EX.s3()]) == Graph.new([{EX.s2(), EX.p(), EX.o2()}]) end test "with an empty subject list" do assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}]) |> Graph.take([]) == Graph.new() end test "with nil" do assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}]) |> Graph.take(nil) == Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}]) end end describe "take/3" do test "with non-empty subject and property lists" do assert Graph.new([ {EX.s1(), EX.p1(), EX.o1()}, {EX.s1(), EX.p2(), EX.o1()}, {EX.s2(), EX.p1(), EX.o2()} ]) |> Graph.take([EX.s1(), EX.s3()], [EX.p2()]) == Graph.new([{EX.s1(), EX.p2(), EX.o1()}]) end test "with an empty subject list" do assert Graph.new( [ {EX.s1(), EX.p1(), EX.o1()}, {EX.s1(), EX.p2(), EX.o1()}, {EX.s2(), EX.p1(), EX.o2()} ], name: EX.Graph ) |> Graph.take([], [EX.p1()]) == Graph.new(name: EX.Graph) end test "with nil" do assert Graph.new([ {EX.s1(), EX.p1(), EX.o1()}, {EX.s1(), EX.p2(), EX.o1()}, {EX.s2(), EX.p1(), EX.o2()} ]) |> Graph.take(nil, [EX.p1()]) == Graph.new([{EX.s1(), EX.p1(), EX.o1()}, {EX.s2(), EX.p1(), EX.o2()}]) end end test "equal/2" do assert Graph.new({EX.S, EX.p(), EX.O}) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O})) assert Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1)) assert Graph.new({EX.S, EX.p(), EX.O}, prefixes: %{ex: EX}) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, prefixes: %{xsd: XSD})) assert Graph.new({EX.S, EX.p(), EX.O}, base_iri: EX.base()) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, base_iri: EX.other_base())) refute Graph.new({EX.S, EX.p(), EX.O}) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O2})) refute Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph2)) end test "prefixes/1" do assert Graph.prefixes(graph()) == nil assert %Graph{prefixes: PrefixMap.new()} |> Graph.prefixes() == PrefixMap.new() end describe "add_prefixes/2" do test "when prefixes already exist" do graph = Graph.new(prefixes: %{xsd: XSD}) |> Graph.add_prefixes(ex: EX) assert graph.prefixes == PrefixMap.new(xsd: XSD, ex: EX) end test "when prefixes are not defined yet" do graph = Graph.new() |> Graph.add_prefixes(ex: EX) assert graph.prefixes == PrefixMap.new(ex: EX) end test "when prefixes have conflicting mappings, the new mapping is used" do graph = Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes(ex: XSD) assert graph.prefixes == PrefixMap.new(ex: XSD) end test "when prefixes have conflicting mappings and a conflict resolver function is provided" do graph = Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes([ex: XSD], fn _, ns, _ -> ns end) assert graph.prefixes == PrefixMap.new(ex: EX) end end describe "delete_prefixes/2" do test "when given a single prefix" do graph = Graph.new(prefixes: %{ex: EX}) |> Graph.delete_prefixes(:ex) assert graph.prefixes == PrefixMap.new() end test "when given a list of prefixes" do graph = Graph.new(prefixes: %{ex1: EX, ex2: EX}) |> Graph.delete_prefixes([:ex1, :ex2, :ex3]) assert graph.prefixes == PrefixMap.new() end test "when prefixes are not defined yet" do graph = Graph.new() |> Graph.delete_prefixes(:ex) assert graph.prefixes == nil end end test "clear_prefixes/1" do assert Graph.clear_prefixes(Graph.new(prefixes: %{ex: EX})) == Graph.new() end test "base_iri/1" do assert Graph.base_iri(graph()) == nil assert %Graph{base_iri: ~I} |> Graph.base_iri() == ~I end describe "set_base_iri/1" do test "when given an IRI" do graph = Graph.new() |> Graph.set_base_iri(~I) assert graph.base_iri == ~I end test "when given a term atom under a vocabulary namespace" do graph = Graph.new() |> Graph.set_base_iri(EX.Base) assert graph.base_iri == RDF.iri(EX.Base) end test "when given a vocabulary namespace module" do graph = Graph.new() |> Graph.set_base_iri(EX) assert graph.base_iri == RDF.iri(EX.__base_iri__()) end test "when given nil" do graph = Graph.new() |> Graph.set_base_iri(nil) assert graph.base_iri == nil end end test "clear_base_iri/1" do assert Graph.clear_base_iri(Graph.new(base_iri: EX.base())) == Graph.new() end test "clear_metadata/1" do assert Graph.clear_metadata(Graph.new(base_iri: EX.base(), prefixes: %{ex: EX})) == Graph.new() end describe "Enumerable protocol" do test "Enum.count" do assert Enum.count(Graph.new(name: EX.foo())) == 0 assert Enum.count(Graph.new({EX.S, EX.p(), EX.O})) == 1 assert Enum.count(Graph.new([{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}])) == 2 g = Graph.add(graph(), [ {EX.Subject1, EX.predicate1(), EX.Object1}, {EX.Subject1, EX.predicate2(), EX.Object2}, {EX.Subject3, EX.predicate3(), EX.Object3} ]) assert Enum.count(g) == 3 end test "Enum.member?" do refute Enum.member?(Graph.new(), {iri(EX.S), EX.p(), iri(EX.O)}) assert Enum.member?(Graph.new({EX.S, EX.p(), EX.O}), {EX.S, EX.p(), EX.O}) g = Graph.add(graph(), [ {EX.Subject1, EX.predicate1(), EX.Object1}, {EX.Subject1, EX.predicate2(), EX.Object2}, {EX.Subject3, EX.predicate3(), EX.Object3} ]) assert Enum.member?(g, {EX.Subject1, EX.predicate1(), EX.Object1}) assert Enum.member?(g, {EX.Subject1, EX.predicate2(), EX.Object2}) assert Enum.member?(g, {EX.Subject3, EX.predicate3(), EX.Object3}) end test "Enum.reduce" do g = Graph.add(graph(), [ {EX.Subject1, EX.predicate1(), EX.Object1}, {EX.Subject1, EX.predicate2(), EX.Object2}, {EX.Subject3, EX.predicate3(), EX.Object3} ]) assert g == Enum.reduce(g, graph(), fn triple, acc -> acc |> Graph.add(triple) end) end end describe "Collectable protocol" do test "with a list of triples" do triples = [ {EX.Subject, EX.predicate1(), EX.Object1}, {EX.Subject, EX.predicate2(), EX.Object2} ] assert Enum.into(triples, Graph.new()) == Graph.new(triples) end test "with a list of lists" do lists = [ [EX.Subject, EX.predicate1(), EX.Object1], [EX.Subject, EX.predicate2(), EX.Object2] ] assert Enum.into(lists, Graph.new()) == Graph.new(Enum.map(lists, &List.to_tuple/1)) end end describe "Access behaviour" do test "access with the [] operator" do assert Graph.new()[EX.Subject] == nil assert Graph.new({EX.S, EX.p(), EX.O})[EX.S] == Description.new(EX.S, init: {EX.p(), EX.O}) end end end