589 lines
23 KiB
Elixir
589 lines
23 KiB
Elixir
defmodule RDF.GraphTest do
|
|
use RDF.Test.Case
|
|
|
|
doctest RDF.Graph
|
|
|
|
alias RDF.PrefixMap
|
|
alias RDF.NS.{XSD, RDFS}
|
|
|
|
describe "new" do
|
|
test "creating an empty unnamed graph" do
|
|
assert unnamed_graph?(unnamed_graph())
|
|
end
|
|
|
|
test "creating an empty graph with a proper graph name" do
|
|
refute unnamed_graph?(named_graph())
|
|
assert named_graph?(named_graph())
|
|
end
|
|
|
|
test "creating an empty graph with a blank node as graph name" do
|
|
assert named_graph(bnode("graph_name"))
|
|
|> named_graph?(bnode("graph_name"))
|
|
end
|
|
|
|
test "creating an empty graph with a coercible graph name" do
|
|
assert named_graph("http://example.com/graph/GraphName")
|
|
|> named_graph?(iri("http://example.com/graph/GraphName"))
|
|
assert named_graph(EX.Foo) |> named_graph?(iri(EX.Foo))
|
|
end
|
|
|
|
test "creating an unnamed graph with an initial triple" do
|
|
g = Graph.new({EX.Subject, EX.predicate, EX.Object})
|
|
assert unnamed_graph?(g)
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
|
|
g = Graph.new(EX.Subject, EX.predicate, EX.Object)
|
|
assert unnamed_graph?(g)
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "creating a named graph with an initial triple" do
|
|
g = Graph.new({EX.Subject, EX.predicate, EX.Object}, name: EX.GraphName)
|
|
assert named_graph?(g, iri(EX.GraphName))
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
|
|
g = Graph.new(EX.Subject, EX.predicate, EX.Object, name: EX.GraphName)
|
|
assert named_graph?(g, iri(EX.GraphName))
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "creating an unnamed graph with a list of initial triples" do
|
|
g = Graph.new([{EX.Subject1, EX.predicate1, EX.Object1},
|
|
{EX.Subject2, EX.predicate2, EX.Object2}])
|
|
assert unnamed_graph?(g)
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2, EX.Object2})
|
|
|
|
g = Graph.new(EX.Subject, EX.predicate, [EX.Object1, EX.Object2])
|
|
assert unnamed_graph?(g)
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object2})
|
|
end
|
|
|
|
test "creating a named graph with a list of initial triples" do
|
|
g = Graph.new([{EX.Subject, EX.predicate1, EX.Object1},
|
|
{EX.Subject, EX.predicate2, EX.Object2}],
|
|
name: EX.GraphName)
|
|
assert named_graph?(g, iri(EX.GraphName))
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate2, EX.Object2})
|
|
|
|
g = Graph.new(EX.Subject, EX.predicate, [EX.Object1, EX.Object2],
|
|
name: EX.GraphName)
|
|
assert named_graph?(g, iri(EX.GraphName))
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object2})
|
|
end
|
|
|
|
test "creating a named graph with an initial description" do
|
|
g = Graph.new(Description.new({EX.Subject, EX.predicate, EX.Object}),
|
|
name: EX.GraphName)
|
|
assert named_graph?(g, iri(EX.GraphName))
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "creating an unnamed graph with an initial description" do
|
|
g = Graph.new(Description.new({EX.Subject, EX.predicate, EX.Object}))
|
|
assert unnamed_graph?(g)
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "creating a named graph from another graph" do
|
|
g = Graph.new(Graph.new({EX.Subject, EX.predicate, EX.Object}),
|
|
name: EX.GraphName)
|
|
assert named_graph?(g, iri(EX.GraphName))
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
|
|
g = Graph.new(Graph.new({EX.Subject, EX.predicate, EX.Object}, name: EX.OtherGraphName),
|
|
name: EX.GraphName)
|
|
assert named_graph?(g, iri(EX.GraphName))
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "creating an unnamed graph from another graph" do
|
|
g = Graph.new(Graph.new({EX.Subject, EX.predicate, EX.Object}))
|
|
assert unnamed_graph?(g)
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
|
|
g = Graph.new(Graph.new({EX.Subject, EX.predicate, EX.Object}, name: EX.OtherGraphName))
|
|
assert unnamed_graph?(g)
|
|
assert graph_includes_statement?(g, {EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "with prefixes" do
|
|
assert Graph.new(prefixes: %{ex: EX}) ==
|
|
%Graph{prefixes: PrefixMap.new(ex: EX)}
|
|
assert Graph.new(prefixes: %{ex: EX}, name: EX.graph_name) ==
|
|
%Graph{prefixes: PrefixMap.new(ex: EX), name: EX.graph_name}
|
|
|
|
assert Graph.new({EX.Subject, EX.predicate, EX.Object}, prefixes: %{ex: EX}) ==
|
|
%Graph{Graph.new({EX.Subject, EX.predicate, EX.Object}) | prefixes: PrefixMap.new(ex: EX)}
|
|
end
|
|
|
|
test "creating a graph from another graph takes the prefixes from the other graph, but overwrites if necessary" do
|
|
prefix_map = PrefixMap.new(ex: EX)
|
|
g = Graph.new(Graph.new(prefixes: prefix_map))
|
|
assert g.prefixes == prefix_map
|
|
|
|
g = Graph.new(Graph.new(prefixes: %{ex: XSD, rdfs: RDFS}), prefixes: prefix_map)
|
|
assert g.prefixes == PrefixMap.new(ex: EX, rdfs: RDFS)
|
|
end
|
|
end
|
|
|
|
describe "add" do
|
|
test "a proper triple" do
|
|
assert Graph.add(graph(), iri(EX.Subject), EX.predicate, iri(EX.Object))
|
|
|> graph_includes_statement?({EX.Subject, EX.predicate, EX.Object})
|
|
assert Graph.add(graph(), {iri(EX.Subject), EX.predicate, iri(EX.Object)})
|
|
|> graph_includes_statement?({EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "a coercible triple" do
|
|
assert Graph.add(graph(),
|
|
"http://example.com/Subject", EX.predicate, EX.Object)
|
|
|> graph_includes_statement?({EX.Subject, EX.predicate, EX.Object})
|
|
assert Graph.add(graph(),
|
|
{"http://example.com/Subject", EX.predicate, EX.Object})
|
|
|> graph_includes_statement?({EX.Subject, EX.predicate, EX.Object})
|
|
end
|
|
|
|
test "a triple with multiple objects" do
|
|
g = Graph.add(graph(), EX.Subject1, EX.predicate1, [EX.Object1, EX.Object2])
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object2})
|
|
end
|
|
|
|
test "a list of triples" do
|
|
g = Graph.add(graph(), [
|
|
{EX.Subject1, EX.predicate1, EX.Object1},
|
|
{EX.Subject1, EX.predicate2, EX.Object2},
|
|
{EX.Subject3, EX.predicate3, EX.Object3}
|
|
])
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2, EX.Object2})
|
|
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3, EX.Object3})
|
|
end
|
|
|
|
test "a Description" do
|
|
g = Graph.add(graph(), Description.new(EX.Subject1, [
|
|
{EX.predicate1, EX.Object1},
|
|
{EX.predicate2, EX.Object2},
|
|
]))
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2, EX.Object2})
|
|
|
|
g = Graph.add(g, Description.new({EX.Subject1, EX.predicate3, EX.Object3}))
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2, EX.Object2})
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3, EX.Object3})
|
|
end
|
|
|
|
test "a list of Descriptions" do
|
|
g = Graph.add(graph(), [
|
|
Description.new({EX.Subject1, EX.predicate1, EX.Object1}),
|
|
Description.new({EX.Subject2, EX.predicate2, EX.Object2}),
|
|
Description.new({EX.Subject1, EX.predicate3, EX.Object3})
|
|
])
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2, EX.Object2})
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3, EX.Object3})
|
|
end
|
|
|
|
test "duplicates are ignored" do
|
|
g = Graph.add(graph(), {EX.Subject, EX.predicate, EX.Object})
|
|
assert Graph.add(g, {EX.Subject, EX.predicate, EX.Object}) == g
|
|
end
|
|
|
|
test "a Graph" do
|
|
g = Graph.add(graph(), Graph.new([
|
|
{EX.Subject1, EX.predicate1, EX.Object1},
|
|
{EX.Subject2, EX.predicate2, EX.Object2},
|
|
{EX.Subject3, EX.predicate3, EX.Object3}
|
|
]))
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2, EX.Object2})
|
|
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3, EX.Object3})
|
|
|
|
g = Graph.add(g, Graph.new([
|
|
{EX.Subject1, EX.predicate1, EX.Object2},
|
|
{EX.Subject2, EX.predicate4, EX.Object4},
|
|
]))
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1, EX.Object2})
|
|
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2, EX.Object2})
|
|
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate4, EX.Object4})
|
|
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3, EX.Object3})
|
|
end
|
|
|
|
test "merges the prefixes of another graph" do
|
|
graph = Graph.new(prefixes: %{xsd: XSD})
|
|
|> Graph.add(Graph.new(prefixes: %{rdfs: RDFS}))
|
|
assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS)
|
|
end
|
|
|
|
test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do
|
|
graph = Graph.new(prefixes: %{ex: EX})
|
|
|> Graph.add(Graph.new(prefixes: %{ex: XSD}))
|
|
assert graph.prefixes == PrefixMap.new(ex: EX)
|
|
end
|
|
|
|
test "preserves the name and prefixes on when the data provided is not a graph" do
|
|
graph = Graph.new(name: EX.GraphName, prefixes: %{ex: EX})
|
|
|> Graph.add(EX.Subject, EX.predicate, EX.Object)
|
|
assert graph.name == RDF.iri(EX.GraphName)
|
|
assert graph.prefixes == PrefixMap.new(ex: EX)
|
|
end
|
|
|
|
test "non-coercible Triple elements are causing an error" do
|
|
assert_raise RDF.IRI.InvalidError, fn ->
|
|
Graph.add(graph(), {"not a IRI", EX.predicate, iri(EX.Object)})
|
|
end
|
|
assert_raise RDF.Literal.InvalidError, fn ->
|
|
Graph.add(graph(), {EX.Subject, EX.prop, self()})
|
|
end
|
|
end
|
|
end
|
|
|
|
|
|
describe "put" do
|
|
test "a list of triples" do
|
|
g = Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}])
|
|
|> RDF.Graph.put([{EX.S1, EX.P2, EX.O3}, {EX.S1, EX.P2, bnode(:foo)},
|
|
{EX.S2, EX.P2, EX.O3}, {EX.S2, EX.P2, EX.O4}])
|
|
|
|
assert Graph.triple_count(g) == 5
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O3})
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
|
|
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O3})
|
|
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O4})
|
|
end
|
|
|
|
test "a Description" do
|
|
g = Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}, {EX.S1, EX.P3, EX.O3}])
|
|
|> RDF.Graph.put(Description.new(EX.S1, [{EX.P3, EX.O4}, {EX.P2, bnode(:foo)}]))
|
|
|
|
assert Graph.triple_count(g) == 4
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4})
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
|
|
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
|
|
end
|
|
|
|
test "a Graph" do
|
|
g =
|
|
Graph.new([
|
|
{EX.S1, EX.P1, EX.O1},
|
|
{EX.S1, EX.P3, EX.O3},
|
|
{EX.S2, EX.P2, EX.O2},
|
|
])
|
|
|> RDF.Graph.put(Graph.new([
|
|
{EX.S1, EX.P3, EX.O4},
|
|
{EX.S2, EX.P2, bnode(:foo)},
|
|
{EX.S3, EX.P3, EX.O3}
|
|
]))
|
|
|
|
assert Graph.triple_count(g) == 4
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
|
|
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4})
|
|
assert graph_includes_statement?(g, {EX.S2, EX.P2, bnode(:foo)})
|
|
assert graph_includes_statement?(g, {EX.S3, EX.P3, EX.O3})
|
|
end
|
|
|
|
test "merges the prefixes of another graph" do
|
|
graph = Graph.new(prefixes: %{xsd: XSD})
|
|
|> Graph.put(Graph.new(prefixes: %{rdfs: RDFS}))
|
|
assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS)
|
|
end
|
|
|
|
test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do
|
|
graph = Graph.new(prefixes: %{ex: EX})
|
|
|> Graph.put(Graph.new(prefixes: %{ex: XSD}))
|
|
assert graph.prefixes == PrefixMap.new(ex: EX)
|
|
end
|
|
|
|
test "preserves the name and prefixes" do
|
|
graph = Graph.new(name: EX.GraphName, prefixes: %{ex: EX})
|
|
|> Graph.put(EX.Subject, EX.predicate, EX.Object)
|
|
assert graph.name == RDF.iri(EX.GraphName)
|
|
assert graph.prefixes == PrefixMap.new(ex: EX)
|
|
end
|
|
end
|
|
|
|
|
|
describe "delete" do
|
|
setup do
|
|
{:ok,
|
|
graph1: Graph.new({EX.S, EX.p, EX.O}),
|
|
graph2: Graph.new({EX.S, EX.p, [EX.O1, EX.O2]}, name: EX.Graph),
|
|
graph3: Graph.new([
|
|
{EX.S1, EX.p1, [EX.O1, EX.O2]},
|
|
{EX.S2, EX.p2, EX.O3},
|
|
{EX.S3, EX.p3, [~B<foo>, ~L"bar"]},
|
|
])
|
|
}
|
|
end
|
|
|
|
test "a single statement as a triple",
|
|
%{graph1: graph1, graph2: graph2} do
|
|
assert Graph.delete(Graph.new, {EX.S, EX.p, EX.O}) == Graph.new
|
|
assert Graph.delete(graph1, {EX.S, EX.p, EX.O}) == Graph.new
|
|
assert Graph.delete(graph2, {EX.S, EX.p, EX.O1}) ==
|
|
Graph.new({EX.S, EX.p, EX.O2}, name: EX.Graph)
|
|
assert Graph.delete(graph2, {EX.S, EX.p, EX.O1}) ==
|
|
Graph.new({EX.S, EX.p, EX.O2}, name: EX.Graph)
|
|
end
|
|
|
|
test "multiple statements with a triple with multiple objects",
|
|
%{graph1: graph1, graph2: graph2} do
|
|
assert Graph.delete(Graph.new, {EX.S, EX.p, [EX.O1, EX.O2]}) == Graph.new
|
|
assert Graph.delete(graph1, {EX.S, EX.p, [EX.O, EX.O2]}) == Graph.new
|
|
assert Graph.delete(graph2, {EX.S, EX.p, [EX.O1, EX.O2]}) == Graph.new(name: EX.Graph)
|
|
end
|
|
|
|
test "multiple statements with a list of triples",
|
|
%{graph1: graph1, graph2: graph2, graph3: graph3} do
|
|
assert Graph.delete(graph1, [{EX.S, EX.p, EX.O},
|
|
{EX.S, EX.p, EX.O2}]) == Graph.new
|
|
assert Graph.delete(graph2, [{EX.S, EX.p, EX.O1},
|
|
{EX.S, EX.p, EX.O2}]) == Graph.new(name: EX.Graph)
|
|
assert Graph.delete(graph3, [
|
|
{EX.S1, EX.p1, [EX.O1, EX.O2]},
|
|
{EX.S2, EX.p2, EX.O3},
|
|
{EX.S3, EX.p3, ~B<foo>}]) == Graph.new({EX.S3, EX.p3, ~L"bar"})
|
|
end
|
|
|
|
test "multiple statements with a Description",
|
|
%{graph1: graph1, graph2: graph2, graph3: graph3} do
|
|
assert Graph.delete(graph1, Description.new(EX.S,
|
|
[{EX.p, EX.O}, {EX.p2, EX.O2}])) == Graph.new
|
|
assert Graph.delete(graph2, Description.new(EX.S, EX.p, [EX.O1, EX.O2])) ==
|
|
Graph.new(name: EX.Graph)
|
|
assert Graph.delete(graph3, Description.new(EX.S3, EX.p3, ~B<foo>)) ==
|
|
Graph.new([
|
|
{EX.S1, EX.p1, [EX.O1, EX.O2]},
|
|
{EX.S2, EX.p2, EX.O3},
|
|
{EX.S3, EX.p3, [~L"bar"]},
|
|
])
|
|
end
|
|
|
|
test "multiple statements with a Graph",
|
|
%{graph1: graph1, graph2: graph2, graph3: graph3} do
|
|
assert Graph.delete(graph1, graph2) == graph1
|
|
assert Graph.delete(graph1, graph1) == Graph.new
|
|
assert Graph.delete(graph2, Graph.new({EX.S, EX.p, [EX.O1, EX.O3]},
|
|
name: EX.Graph)) ==
|
|
Graph.new({EX.S, EX.p, EX.O2}, name: EX.Graph)
|
|
assert Graph.delete(graph3, Graph.new([
|
|
{EX.S1, EX.p1, [EX.O1, EX.O2]},
|
|
{EX.S2, EX.p2, EX.O3},
|
|
{EX.S3, EX.p3, ~B<foo>},
|
|
])) == Graph.new({EX.S3, EX.p3, ~L"bar"})
|
|
end
|
|
|
|
test "preserves the name and prefixes" do
|
|
graph = Graph.new(EX.Subject, EX.predicate, EX.Object, name: EX.GraphName, prefixes: %{ex: EX})
|
|
|> Graph.delete(EX.Subject, EX.predicate, EX.Object)
|
|
assert graph.name == RDF.iri(EX.GraphName)
|
|
assert graph.prefixes == PrefixMap.new(ex: EX)
|
|
end
|
|
end
|
|
|
|
|
|
describe "delete_subjects" do
|
|
setup do
|
|
{:ok,
|
|
graph1: Graph.new({EX.S, EX.p, [EX.O1, EX.O2]}, name: EX.Graph),
|
|
graph2: Graph.new([
|
|
{EX.S1, EX.p1, [EX.O1, EX.O2]},
|
|
{EX.S2, EX.p2, EX.O3},
|
|
{EX.S3, EX.p3, [~B<foo>, ~L"bar"]},
|
|
])
|
|
}
|
|
end
|
|
|
|
test "a single subject", %{graph1: graph1} do
|
|
assert Graph.delete_subjects(graph1, EX.Other) == graph1
|
|
assert Graph.delete_subjects(graph1, EX.S) == Graph.new(name: EX.Graph)
|
|
end
|
|
|
|
test "a list of subjects", %{graph1: graph1, graph2: graph2} do
|
|
assert Graph.delete_subjects(graph1, [EX.S, EX.Other]) == Graph.new(name: EX.Graph)
|
|
assert Graph.delete_subjects(graph2, [EX.S1, EX.S2, EX.S3]) == Graph.new
|
|
end
|
|
end
|
|
|
|
|
|
test "pop" do
|
|
assert Graph.pop(Graph.new) == {nil, Graph.new}
|
|
|
|
{triple, graph} = Graph.new({EX.S, EX.p, EX.O}) |> Graph.pop
|
|
assert {iri(EX.S), iri(EX.p), iri(EX.O)} == triple
|
|
assert Enum.count(graph.descriptions) == 0
|
|
|
|
{{subject, predicate, _}, graph} =
|
|
Graph.new([{EX.S, EX.p, EX.O1}, {EX.S, EX.p, EX.O2}])
|
|
|> Graph.pop
|
|
assert {subject, predicate} == {iri(EX.S), iri(EX.p)}
|
|
assert Enum.count(graph.descriptions) == 1
|
|
|
|
{{subject, _, _}, graph} =
|
|
Graph.new([{EX.S, EX.p1, EX.O1}, {EX.S, EX.p2, EX.O2}])
|
|
|> Graph.pop
|
|
assert subject == iri(EX.S)
|
|
assert Enum.count(graph.descriptions) == 1
|
|
end
|
|
|
|
|
|
test "values/1" do
|
|
assert Graph.new() |> Graph.values() == %{}
|
|
assert Graph.new([{EX.s1, EX.p, EX.o1}, {EX.s2, EX.p, EX.o2}])
|
|
|> Graph.values() ==
|
|
%{
|
|
RDF.Term.value(EX.s1) => %{RDF.Term.value(EX.p) => [RDF.Term.value(EX.o1)]},
|
|
RDF.Term.value(EX.s2) => %{RDF.Term.value(EX.p) => [RDF.Term.value(EX.o2)]},
|
|
}
|
|
end
|
|
|
|
test "values/2" do
|
|
mapping = fn
|
|
{:predicate, predicate} ->
|
|
predicate |> to_string() |> String.split("/") |> List.last() |> String.to_atom()
|
|
{_, term} ->
|
|
RDF.Term.value(term)
|
|
end
|
|
|
|
assert Graph.new() |> Graph.values(mapping) == %{}
|
|
assert Graph.new([{EX.s1, EX.p, EX.o1}, {EX.s2, EX.p, EX.o2}])
|
|
|> Graph.values(mapping) ==
|
|
%{
|
|
RDF.Term.value(EX.s1) => %{p: [RDF.Term.value(EX.o1)]},
|
|
RDF.Term.value(EX.s2) => %{p: [RDF.Term.value(EX.o2)]},
|
|
}
|
|
end
|
|
|
|
|
|
test "equal/2" do
|
|
assert Graph.new({EX.S, EX.p, EX.O}) |> Graph.equal?(Graph.new({EX.S, EX.p, EX.O}))
|
|
assert Graph.new({EX.S, EX.p, EX.O}, name: EX.Graph1)
|
|
|> Graph.equal?(Graph.new({EX.S, EX.p, EX.O}, name: EX.Graph1))
|
|
assert Graph.new({EX.S, EX.p, EX.O}, prefixes: %{ex: EX})
|
|
|> Graph.equal?(Graph.new({EX.S, EX.p, EX.O}, prefixes: %{xsd: XSD}))
|
|
|
|
refute Graph.new({EX.S, EX.p, EX.O}) |> Graph.equal?(Graph.new({EX.S, EX.p, EX.O2}))
|
|
refute Graph.new({EX.S, EX.p, EX.O}, name: EX.Graph1)
|
|
|> Graph.equal?(Graph.new({EX.S, EX.p, EX.O}, name: EX.Graph2))
|
|
end
|
|
|
|
|
|
describe "add_prefixes/2" do
|
|
test "when prefixes already exist" do
|
|
graph = Graph.new(prefixes: %{xsd: XSD}) |> Graph.add_prefixes(ex: EX)
|
|
assert graph.prefixes == PrefixMap.new(xsd: XSD, ex: EX)
|
|
end
|
|
|
|
test "when prefixes are not defined yet" do
|
|
graph = Graph.new() |> Graph.add_prefixes(ex: EX)
|
|
assert graph.prefixes == PrefixMap.new(ex: EX)
|
|
end
|
|
|
|
test "when prefixes have conflicting mappings, the new mapping is used" do
|
|
graph = Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes(ex: XSD)
|
|
assert graph.prefixes == PrefixMap.new(ex: XSD)
|
|
end
|
|
|
|
test "when prefixes have conflicting mappings and a conflict resolver function is provided" do
|
|
graph = Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes([ex: XSD], fn _, ns, _ -> ns end)
|
|
assert graph.prefixes == PrefixMap.new(ex: EX)
|
|
end
|
|
end
|
|
|
|
describe "delete_prefixes/2" do
|
|
test "when given a single prefix" do
|
|
graph = Graph.new(prefixes: %{ex: EX}) |> Graph.delete_prefixes(:ex)
|
|
assert graph.prefixes == PrefixMap.new()
|
|
end
|
|
|
|
test "when given a list of prefixes" do
|
|
graph = Graph.new(prefixes: %{ex1: EX, ex2: EX}) |> Graph.delete_prefixes([:ex1, :ex2, :ex3])
|
|
assert graph.prefixes == PrefixMap.new()
|
|
end
|
|
|
|
test "when prefixes are not defined yet" do
|
|
graph = Graph.new() |> Graph.delete_prefixes(:ex)
|
|
assert graph.prefixes == nil
|
|
end
|
|
end
|
|
|
|
test "clear_prefixes/1" do
|
|
assert Graph.clear_prefixes(Graph.new(prefixes: %{ex: EX})) == Graph.new
|
|
end
|
|
|
|
describe "Enumerable protocol" do
|
|
test "Enum.count" do
|
|
assert Enum.count(Graph.new(name: EX.foo)) == 0
|
|
assert Enum.count(Graph.new {EX.S, EX.p, EX.O}) == 1
|
|
assert Enum.count(Graph.new [{EX.S, EX.p, EX.O1}, {EX.S, EX.p, EX.O2}]) == 2
|
|
|
|
g = Graph.add(graph(), [
|
|
{EX.Subject1, EX.predicate1, EX.Object1},
|
|
{EX.Subject1, EX.predicate2, EX.Object2},
|
|
{EX.Subject3, EX.predicate3, EX.Object3}
|
|
])
|
|
assert Enum.count(g) == 3
|
|
end
|
|
|
|
test "Enum.member?" do
|
|
refute Enum.member?(Graph.new, {iri(EX.S), EX.p, iri(EX.O)})
|
|
assert Enum.member?(Graph.new({EX.S, EX.p, EX.O}), {EX.S, EX.p, EX.O})
|
|
|
|
g = Graph.add(graph(), [
|
|
{EX.Subject1, EX.predicate1, EX.Object1},
|
|
{EX.Subject1, EX.predicate2, EX.Object2},
|
|
{EX.Subject3, EX.predicate3, EX.Object3}
|
|
])
|
|
assert Enum.member?(g, {EX.Subject1, EX.predicate1, EX.Object1})
|
|
assert Enum.member?(g, {EX.Subject1, EX.predicate2, EX.Object2})
|
|
assert Enum.member?(g, {EX.Subject3, EX.predicate3, EX.Object3})
|
|
end
|
|
|
|
test "Enum.reduce" do
|
|
g = Graph.add(graph(), [
|
|
{EX.Subject1, EX.predicate1, EX.Object1},
|
|
{EX.Subject1, EX.predicate2, EX.Object2},
|
|
{EX.Subject3, EX.predicate3, EX.Object3}
|
|
])
|
|
|
|
assert g == Enum.reduce(g, graph(),
|
|
fn(triple, acc) -> acc |> Graph.add(triple) end)
|
|
end
|
|
end
|
|
|
|
describe "Collectable protocol" do
|
|
test "with a list of triples" do
|
|
triples = [
|
|
{EX.Subject, EX.predicate1, EX.Object1},
|
|
{EX.Subject, EX.predicate2, EX.Object2}
|
|
]
|
|
assert Enum.into(triples, Graph.new()) == Graph.new(triples)
|
|
end
|
|
|
|
test "with a list of lists" do
|
|
lists = [
|
|
[EX.Subject, EX.predicate1, EX.Object1],
|
|
[EX.Subject, EX.predicate2, EX.Object2]
|
|
]
|
|
assert Enum.into(lists, Graph.new()) ==
|
|
Graph.new(Enum.map(lists, &List.to_tuple/1))
|
|
end
|
|
end
|
|
|
|
describe "Access behaviour" do
|
|
test "access with the [] operator" do
|
|
assert Graph.new[EX.Subject] == nil
|
|
assert Graph.new({EX.S, EX.p, EX.O})[EX.S] ==
|
|
Description.new({EX.S, EX.p, EX.O})
|
|
end
|
|
end
|
|
|
|
end
|