rdf-ex/test/unit/graph_test.exs
2022-04-05 21:06:29 +02:00

1644 lines
55 KiB
Elixir

defmodule RDF.GraphTest do
use RDF.Test.Case
doctest RDF.Graph
alias RDF.PrefixMap
alias RDF.NS.{XSD, RDFS}
describe "new" do
test "creating an empty unnamed graph" do
assert unnamed_graph?(unnamed_graph())
end
test "creating an empty graph with a proper graph name" do
refute unnamed_graph?(named_graph())
assert named_graph?(named_graph())
end
test "creating an empty graph with a blank node as graph name" do
assert named_graph(bnode("graph_name"))
|> named_graph?(bnode("graph_name"))
end
test "creating an empty graph with a coercible graph name" do
assert named_graph("http://example.com/graph/GraphName")
|> named_graph?(iri("http://example.com/graph/GraphName"))
assert named_graph(EX.Foo) |> named_graph?(iri(EX.Foo))
end
test "creating an unnamed graph with an initial triple" do
g = Graph.new({EX.Subject, EX.predicate(), EX.Object})
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating a named graph with an initial triple" do
g = Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph with a list of initial triples" do
g =
Graph.new([
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject2, EX.predicate2(), EX.Object2}
])
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
g = Graph.new({EX.Subject, EX.predicate(), [EX.Object1, EX.Object2]})
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object2})
end
test "creating a named graph with a list of initial triples" do
g =
Graph.new(
[{EX.Subject, EX.predicate1(), EX.Object1}, {EX.Subject, EX.predicate2(), EX.Object2}],
name: EX.GraphName
)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject, EX.predicate2(), EX.Object2})
g = Graph.new({EX.Subject, EX.predicate(), [EX.Object1, EX.Object2]}, name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object2})
end
test "initial triples with an empty object list" do
assert Graph.new({EX.Subject, EX.predicate(), []}) == Graph.new()
end
test "creating a named graph with an initial description" do
g =
Description.new(EX.Subject, init: {EX.predicate(), EX.Object})
|> Graph.new(name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph with an initial description" do
g =
Description.new(EX.Subject, init: {EX.predicate(), EX.Object})
|> Graph.new()
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph with an empty description" do
g = Graph.new(Description.new(EX.Subject))
assert empty_graph?(g)
end
test "creating a named graph from another graph" do
g =
Graph.new({EX.Subject, EX.predicate(), EX.Object})
|> Graph.new(name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
g =
Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.OtherGraphName)
|> Graph.new(name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph from another graph" do
g = Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object}))
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
g = Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.OtherGraphName))
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an graph from a dataset" do
g =
Dataset.new([
{EX.Subject1, EX.predicate1(), EX.Object1, nil},
{EX.Subject2, EX.predicate2(), EX.Object2, EX.Graph1},
{EX.Subject3, EX.predicate3(), EX.Object3, EX.Graph1},
{EX.Subject3, EX.predicate3(), EX.Object3, EX.Graph2},
{EX.Subject4, EX.predicate4(), EX.Object4, EX.Graph2}
])
|> Graph.new()
assert unnamed_graph?(g)
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
assert graph_includes_statement?(g, {EX.Subject4, EX.predicate4(), EX.Object4})
g =
Dataset.new([
{EX.Subject1, EX.predicate1(), EX.Object1, nil},
{EX.Subject2, EX.predicate2(), EX.Object2, EX.Graph1},
{EX.Subject3, EX.predicate3(), EX.Object3, EX.Graph1},
{EX.Subject3, EX.predicate3(), EX.Object3, EX.Graph2},
{EX.Subject4, EX.predicate4(), EX.Object4, EX.Graph2}
])
|> Graph.new(name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
assert graph_includes_statement?(g, {EX.Subject4, EX.predicate4(), EX.Object4})
end
test "with a context" do
g =
Graph.new(
[
{EX.Subject1, p1: EX.Object1},
%{EX.Subject2 => %{p2: EX.Object2}}
],
context: %{p1: EX.predicate1(), p2: EX.predicate2()}
)
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
end
test "with prefixes" do
assert Graph.new(prefixes: %{ex: EX}) ==
%Graph{prefixes: PrefixMap.new(ex: EX)}
assert Graph.new(prefixes: %{ex: EX}, name: EX.graph_name()) ==
%Graph{prefixes: PrefixMap.new(ex: EX), name: EX.graph_name()}
assert Graph.new({EX.Subject, EX.predicate(), EX.Object}, prefixes: %{ex: EX}) ==
%Graph{
Graph.new({EX.Subject, EX.predicate(), EX.Object})
| prefixes: PrefixMap.new(ex: EX)
}
end
test "with base_iri" do
assert Graph.new(base_iri: EX.base()) ==
%Graph{base_iri: EX.base()}
assert Graph.new(prefixes: %{ex: EX}, base_iri: EX.base()) ==
%Graph{prefixes: PrefixMap.new(ex: EX), base_iri: EX.base()}
assert Graph.new({EX.Subject, EX.predicate(), EX.Object}, base_iri: EX.base()) ==
%Graph{Graph.new({EX.Subject, EX.predicate(), EX.Object}) | base_iri: EX.base()}
end
test "creating a graph from another graph takes the prefixes from the other graph, but overwrites if necessary" do
prefix_map = PrefixMap.new(ex: EX)
g = Graph.new(Graph.new(prefixes: prefix_map))
assert g.prefixes == prefix_map
g = Graph.new(Graph.new(prefixes: %{ex: XSD, rdfs: RDFS}), prefixes: prefix_map)
assert g.prefixes == PrefixMap.new(ex: EX, rdfs: RDFS)
end
@tag skip: "This case is currently not supported, since it's indistinguishable from Keywords"
test "creating a graph with a list of subject-predications pairs" do
g =
Graph.new([
{EX.S1,
[
{EX.P1, EX.O1},
%{EX.P2 => [EX.O2]}
]}
])
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O2})
end
test "with init data" do
g =
Graph.new(
init: [
{EX.S1,
[
{EX.P1, EX.O1},
%{EX.P2 => [EX.O2]}
]}
]
)
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O2})
g =
Graph.new(
name: EX.Graph,
init: {EX.S, EX.p(), EX.O}
)
assert named_graph?(g, RDF.iri(EX.Graph))
assert graph_includes_statement?(g, {EX.S, EX.p(), EX.O})
end
test "a graph map" do
g =
Graph.new(%{
EX.Subject1 => [{EX.predicate1(), EX.Object1}, {EX.predicate2(), [EX.Object2]}],
EX.Subject3 => %{EX.predicate3() => EX.Object3}
})
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "with an initializer function" do
g = Graph.new(init: fn -> {EX.S, EX.p(), EX.O} end)
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.S, EX.p(), EX.O})
end
end
test "clear/1" do
opts = [name: EX.Graph, base_iri: EX.base(), prefixes: %{ex: EX.prefix()}]
assert Graph.new({EX.S, EX.p(), EX.O}, opts)
|> Graph.clear() == Graph.new(opts)
end
test "name/1" do
assert Graph.name(graph()) == graph().name
end
test "change_name/2" do
assert Graph.change_name(graph(), EX.NewGraph).name == iri(EX.NewGraph)
assert Graph.change_name(named_graph(), nil).name == nil
end
describe "add/3" do
test "a proper triple" do
assert Graph.add(graph(), {iri(EX.Subject), EX.predicate(), iri(EX.Object)})
|> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object})
end
test "a coerced triple" do
assert Graph.add(
graph(),
{"http://example.com/Subject", EX.predicate(), EX.Object}
)
|> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object})
end
test "a triple with multiple objects" do
g = Graph.add(graph(), {EX.Subject1, EX.predicate1(), [EX.Object1, EX.Object2]})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object2})
end
test "a list of triples" do
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "a list of subject-predications pairs" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}])
|> Graph.add([
{EX.S1,
[
{EX.P1, EX.O3},
%{EX.P2 => [EX.O4]}
]}
])
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O4})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
end
test "empty object list" do
assert Graph.add(graph(), {EX.S, EX.P, []}) == graph()
graph = Graph.new({EX.S, EX.P, EX.O})
assert Graph.add(graph, {EX.S, EX.P, []}) == graph
end
test "a mixed list" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}, {EX.S1, EX.p3(), EX.O3}])
|> Graph.add([
%{EX.S1 => {EX.p1(), EX.O41}},
%{
EX.S1 => %{EX.p1() => EX.O42},
EX.S2 => %{EX.p2() => EX.O42}
},
{EX.S2, {EX.p2(), EX.O43}},
[{EX.S2, {EX.p2(), EX.O44}}],
EX.p2(EX.S2, EX.O45)
])
assert Graph.triple_count(g) == 9
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.p3(), EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O41})
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O43})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O44})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O45})
end
test "a graph map" do
g =
Graph.add(graph(), %{
EX.Subject1 => [{EX.predicate1(), EX.Object1}, {EX.predicate2(), [EX.Object2]}],
EX.Subject3 => %{EX.predicate3() => EX.Object3}
})
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "an empty map" do
assert Graph.add(graph(), %{}) == graph()
end
test "a description" do
g =
Graph.add(
graph(),
Description.new(EX.Subject1)
|> Description.add([
{EX.predicate1(), EX.Object1},
{EX.predicate2(), EX.Object2}
])
)
assert Graph.triple_count(g) == 2
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
g = Graph.add(g, Description.new(EX.Subject1, init: {EX.predicate3(), EX.Object3}))
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3(), EX.Object3})
end
test "an empty description is ignored" do
g = Graph.new() |> Graph.add(Description.new(EX.Subject))
assert empty_graph?(g)
end
test "a list of descriptions" do
g =
Graph.add(graph(), [
Description.new(EX.Subject1, init: {EX.predicate1(), EX.Object1}),
Description.new(EX.Subject2, init: {EX.predicate2(), EX.Object2}),
Description.new(EX.Subject1, init: {EX.predicate3(), EX.Object3})
])
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3(), EX.Object3})
end
test "duplicates are ignored" do
g = Graph.add(graph(), {EX.Subject, EX.predicate(), EX.Object})
assert Graph.add(g, {EX.Subject, EX.predicate(), EX.Object}) == g
end
test "a graph" do
g =
Graph.add(
graph(),
Graph.new([
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject2, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
)
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
g =
Graph.add(
g,
Graph.new([
{EX.Subject1, EX.predicate1(), EX.Object2},
{EX.Subject2, EX.predicate4(), EX.Object4}
])
)
assert Graph.triple_count(g) == 5
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate4(), EX.Object4})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "a dataset" do
g =
Graph.add(
graph(),
Dataset.new([
{EX.Subject1, EX.predicate1(), EX.Object1, nil},
{EX.Subject2, EX.predicate2(), EX.Object2, EX.Graph1},
{EX.Subject3, EX.predicate3(), EX.Object3, EX.Graph1},
{EX.Subject3, EX.predicate3(), EX.Object3, EX.Graph2},
{EX.Subject4, EX.predicate4(), EX.Object4, EX.Graph2}
])
)
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
assert graph_includes_statement?(g, {EX.Subject4, EX.predicate4(), EX.Object4})
end
test "merges the prefixes of another graph" do
graph =
Graph.new(prefixes: %{xsd: XSD})
|> Graph.add(Graph.new(prefixes: %{rdfs: RDFS}))
assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS)
end
test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do
graph =
Graph.new(prefixes: %{ex: EX})
|> Graph.add(Graph.new(prefixes: %{ex: XSD}))
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "preserves the base_iri" do
graph =
Graph.new()
|> Graph.add(Graph.new({EX.Subject, EX.predicate(), EX.Object}, base_iri: EX.base()))
assert graph.base_iri == Graph.new().base_iri
end
test "preserves the name and prefixes when the data provided is not a graph" do
graph =
Graph.new(name: EX.GraphName, prefixes: %{ex: EX})
|> Graph.add({EX.Subject, EX.predicate(), EX.Object})
assert graph.name == RDF.iri(EX.GraphName)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "with a context" do
context =
PropertyMap.new(
p1: EX.p1(),
p2: EX.p2()
)
assert Graph.add(graph(), {EX.Subject, :p, 42}, context: [p: EX.predicate()])
|> graph_includes_statement?({RDF.iri(EX.Subject), EX.predicate(), literal(42)})
assert Graph.add(graph(), {EX.Subject, :p, 42, EX.Graph}, context: %{p: EX.predicate()})
|> graph_includes_statement?({RDF.iri(EX.Subject), EX.predicate(), literal(42)})
g =
Graph.add(
graph(),
[
{EX.S1, :p1, EX.O1},
{EX.S2, :p2, [EX.O21, EX.O22]}
],
context: context
)
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O1})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O21})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O22})
g =
Graph.add(
graph(),
[
{EX.S1,
[
{:p1, EX.O1},
%{p2: [EX.O2]}
]}
],
context: context
)
assert Graph.triple_count(g) == 2
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.p2(), EX.O2})
g =
Graph.add(
graph(),
[
%{EX.S1 => {:p1, EX.O1}},
%{
EX.S1 => %{p1: EX.O11},
EX.S2 => %{p1: EX.O2}
},
{EX.S2, {:p2, EX.O2}},
[{EX.S2, {:p2, EX.O21}}],
EX.p2(EX.S2, EX.O22)
],
context: context
)
assert Graph.triple_count(g) == 6
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O11})
assert graph_includes_statement?(g, {EX.S2, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O21})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O22})
end
test "non-coercible Triple elements are causing an error" do
assert_raise RDF.IRI.InvalidError, fn ->
Graph.add(graph(), {"not a IRI", EX.predicate(), iri(EX.Object)})
end
assert_raise RDF.Literal.InvalidError, fn ->
Graph.add(graph(), {EX.Subject, EX.prop(), self()})
end
end
test "structs are causing an error" do
assert_raise FunctionClauseError, fn ->
Graph.add(graph(), Date.utc_today())
end
assert_raise FunctionClauseError, fn ->
Graph.add(graph(), RDF.bnode())
end
end
end
describe "put/3" do
test "a list of triples" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}, {EX.S3, EX.P3, EX.O3}])
|> Graph.put([
{EX.S1, EX.P2, EX.O3},
{EX.S1, EX.P2, bnode(:foo)},
{EX.S2, EX.P3, EX.O3}
])
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P3, EX.O3})
assert graph_includes_statement?(g, {EX.S3, EX.P3, EX.O3})
end
test "quads" do
g =
Graph.new([{EX.S1, EX.P1, EX.O}, {EX.S2, EX.P2, EX.O}])
|> Graph.put([
{EX.S1, EX.P3, bnode(:foo), EX.Graph1},
{EX.S2, EX.P3, EX.O1, EX.Graph2},
{EX.S2, EX.P3, EX.O2, nil},
{EX.S2, EX.P3, EX.O3}
])
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.P3, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P3, EX.O1})
assert graph_includes_statement?(g, {EX.S2, EX.P3, EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.P3, EX.O3})
end
test "a list of subject-predications pairs" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}])
|> Graph.put([
{EX.S1,
[
{EX.P3, EX.O3},
%{EX.P4 => [EX.O4]}
]}
])
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.P4, EX.O4})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
end
test "a mixed list" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}, {EX.S1, EX.p3(), EX.O3}])
|> Graph.put([
%{EX.S1 => {EX.p1(), EX.O41}},
%{
EX.S1 => %{EX.p1() => EX.O42},
EX.S2 => %{EX.p3() => EX.O42}
},
{EX.S2, {EX.p3(), EX.O43}},
[{EX.S2, {EX.p3(), EX.O44}}],
EX.p2(EX.S3, EX.O45)
])
assert Graph.triple_count(g) == 6
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O41})
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p3(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p3(), EX.O43})
assert graph_includes_statement?(g, {EX.S2, EX.p3(), EX.O44})
assert graph_includes_statement?(g, {EX.S3, EX.p2(), EX.O45})
end
test "a map" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}])
|> Graph.put(%{
EX.S1 => [{EX.p1(), EX.O2}],
EX.S2 => %{EX.p1() => EX.O2},
EX.S3 => %{EX.p3() => EX.O3}
})
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S3, EX.p3(), EX.O3})
end
test "a description" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}, {EX.S1, EX.P3, EX.O3}])
|> Graph.put(
Description.new(EX.S1)
|> Description.add([{EX.P3, EX.O4}, {EX.P2, bnode(:foo)}])
)
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4})
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
end
test "an empty description is ignored" do
g = Graph.new() |> Graph.put(Description.new(EX.Subject))
assert empty_graph?(g)
end
test "a list of descriptions" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}, {EX.S3, EX.p3(), EX.O3}])
|> Graph.put([
EX.p2(EX.S1, EX.O41),
EX.p2(EX.S2, EX.O42),
EX.p2(EX.S2, EX.O43)
])
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S3, EX.p3(), EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.p2(), EX.O41})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O43})
end
test "a graph" do
g =
Graph.new([
{EX.S1, EX.P1, EX.O1},
{EX.S2, EX.P2, EX.O2}
])
|> Graph.put(
Graph.new([
{EX.S1, EX.P12, EX.O12},
{EX.S3, EX.P3, EX.O3}
])
)
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.S1, EX.P12, EX.O12})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
assert graph_includes_statement?(g, {EX.S3, EX.P3, EX.O3})
end
test "merges the prefixes of another graph" do
graph =
Graph.new(prefixes: %{xsd: XSD})
|> Graph.put(Graph.new(prefixes: %{rdfs: RDFS}))
assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS)
end
test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do
graph =
Graph.new(prefixes: %{ex: EX})
|> Graph.put(Graph.new(prefixes: %{ex: XSD}))
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "preserves the name, base_iri and prefixes" do
graph =
Graph.new(name: EX.GraphName, prefixes: %{ex: EX}, base_iri: EX.base())
|> Graph.put({EX.Subject, EX.predicate(), EX.Object})
assert graph.name == RDF.iri(EX.GraphName)
assert graph.prefixes == PrefixMap.new(ex: EX)
assert graph.base_iri == EX.base()
end
test "with a context" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}])
|> Graph.put(
%{
EX.S1 => [p1: EX.O2],
EX.S2 => %{p1: EX.O2},
EX.S3 => %{p3: EX.O3}
},
context: [p1: EX.p1(), p3: EX.p3()]
)
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S3, EX.p3(), EX.O3})
end
test "RDF.Datasets are causing an error" do
assert_raise ArgumentError, fn ->
Graph.put(graph(), RDF.dataset())
end
end
test "structs are causing an error" do
assert_raise FunctionClauseError, fn ->
Graph.put(graph(), Date.utc_today())
end
assert_raise FunctionClauseError, fn ->
Graph.put(graph(), RDF.bnode())
end
end
end
describe "put_properties/3" do
test "a list of triples" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}])
|> Graph.put_properties([
{EX.S1, EX.P2, EX.O3},
{EX.S1, EX.P2, bnode(:foo)},
{EX.S2, EX.P2, EX.O3},
{EX.S2, EX.P2, EX.O4}
])
assert Graph.triple_count(g) == 5
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O3})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O4})
end
test "quads" do
g =
Graph.new([{EX.S1, EX.P1, EX.O}, {EX.S2, EX.P2, EX.O}])
|> Graph.put_properties([
{EX.S2, EX.P2, bnode(:foo), EX.Graph1},
{EX.S2, EX.P2, EX.O1, EX.Graph2},
{EX.S2, EX.P2, EX.O2, nil},
{EX.S2, EX.P2, EX.O3}
])
assert Graph.triple_count(g) == 5
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O})
assert graph_includes_statement?(g, {EX.S2, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O1})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O3})
end
test "a list of subject-predications pairs" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}])
|> Graph.put_properties([
{EX.S1,
[
{EX.P1, EX.O3},
%{EX.P2 => [EX.O4]}
]}
])
assert Graph.triple_count(g) == 3
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O4})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
end
test "a mixed list" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}, {EX.S1, EX.p3(), EX.O3}])
|> Graph.put_properties([
%{EX.S1 => {EX.p1(), EX.O41}},
%{
EX.S1 => %{EX.p1() => EX.O42},
EX.S2 => %{EX.p2() => EX.O42}
},
{EX.S2, {EX.p2(), EX.O43}},
[{EX.S2, {EX.p2(), EX.O44}}],
EX.p2(EX.S2, EX.O45)
])
assert Graph.triple_count(g) == 7
assert graph_includes_statement?(g, {EX.S1, EX.p3(), EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O41})
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O43})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O44})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O45})
end
test "a map" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}])
|> Graph.put_properties(%{
EX.S1 => [{EX.p1(), EX.O2}],
EX.S2 => %{EX.p1() => EX.O2},
EX.S3 => %{EX.p3() => EX.O3}
})
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S3, EX.p3(), EX.O3})
end
test "a description" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}, {EX.S1, EX.P3, EX.O3}])
|> Graph.put_properties(
Description.new(EX.S1)
|> Description.add([{EX.P3, EX.O4}, {EX.P2, bnode(:foo)}])
)
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4})
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
end
test "an empty description is ignored" do
g = Graph.new() |> Graph.put_properties(Description.new(EX.Subject))
assert empty_graph?(g)
end
test "a list of descriptions" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}, {EX.S1, EX.p3(), EX.O3}])
|> Graph.put_properties([
EX.p1(EX.S1, EX.O41),
EX.p2(EX.S2, EX.O42),
EX.p2(EX.S2, EX.O43)
])
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.p3(), EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O41})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O42})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O43})
end
test "a graph" do
g =
Graph.new([
{EX.S1, EX.P1, EX.O1},
{EX.S1, EX.P3, EX.O3},
{EX.S2, EX.P2, EX.O2}
])
|> Graph.put_properties(
Graph.new([
{EX.S1, EX.P3, EX.O4},
{EX.S2, EX.P2, bnode(:foo)},
{EX.S3, EX.P3, EX.O3}
])
)
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4})
assert graph_includes_statement?(g, {EX.S2, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S3, EX.P3, EX.O3})
end
test "merges the prefixes of another graph" do
graph =
Graph.new(prefixes: %{xsd: XSD})
|> Graph.put_properties(Graph.new(prefixes: %{rdfs: RDFS}))
assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS)
end
test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do
graph =
Graph.new(prefixes: %{ex: EX})
|> Graph.put_properties(Graph.new(prefixes: %{ex: XSD}))
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "preserves the name, base_iri and prefixes" do
graph =
Graph.new(name: EX.GraphName, prefixes: %{ex: EX}, base_iri: EX.base())
|> Graph.put_properties({EX.Subject, EX.predicate(), EX.Object})
assert graph.name == RDF.iri(EX.GraphName)
assert graph.prefixes == PrefixMap.new(ex: EX)
assert graph.base_iri == EX.base()
end
test "with a context" do
g =
Graph.new([{EX.S1, EX.p1(), EX.O1}, {EX.S2, EX.p2(), EX.O2}])
|> Graph.put_properties(
%{
EX.S1 => [p1: EX.O2],
EX.S2 => %{p1: EX.O2},
EX.S3 => %{p3: EX.O3}
},
context: [p1: EX.p1(), p3: EX.p3()]
)
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p1(), EX.O2})
assert graph_includes_statement?(g, {EX.S2, EX.p2(), EX.O2})
assert graph_includes_statement?(g, {EX.S3, EX.p3(), EX.O3})
end
test "RDF.Datasets are causing an error" do
assert_raise ArgumentError, fn ->
Graph.put_properties(graph(), RDF.dataset())
end
end
test "structs are causing an error" do
assert_raise FunctionClauseError, fn ->
Graph.put_properties(graph(), Date.utc_today())
end
assert_raise FunctionClauseError, fn ->
Graph.put_properties(graph(), RDF.bnode())
end
end
end
describe "delete/3" do
setup do
{:ok,
graph1: Graph.new({EX.S, EX.p(), EX.O}),
graph2: Graph.new({EX.S, EX.p(), [EX.O1, EX.O2]}, name: EX.Graph),
graph3:
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), [~B<foo>, ~L"bar"]}
])}
end
test "a triple",
%{graph1: graph1, graph2: graph2} do
assert Graph.delete(Graph.new(), {EX.S, EX.p(), EX.O}) == Graph.new()
assert Graph.delete(graph1, {EX.S, EX.p(), EX.O}) == Graph.new()
assert Graph.delete(graph2, {EX.S, EX.p(), EX.O1}) ==
Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph)
assert Graph.delete(graph2, {EX.S, EX.p(), EX.O1}) ==
Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph)
end
test "a triple with multiple objects", %{graph1: graph1, graph2: graph2} do
assert Graph.delete(Graph.new(), {EX.S, EX.p(), [EX.O1, EX.O2]}) == Graph.new()
assert Graph.delete(graph1, {EX.S, EX.p(), [EX.O, EX.O2]}) == Graph.new()
assert Graph.delete(graph2, {EX.S, EX.p(), [EX.O1, EX.O2]}) == Graph.new(name: EX.Graph)
end
test "a list of triples", %{graph1: graph1, graph2: graph2, graph3: graph3} do
assert Graph.delete(graph1, [{EX.S, EX.p(), EX.O}, {EX.S, EX.p(), EX.O2}]) == Graph.new()
assert Graph.delete(graph2, [{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}]) ==
Graph.new(name: EX.Graph)
assert Graph.delete(graph3, [
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), ~B<foo>}
]) == Graph.new({EX.S3, EX.p3(), ~L"bar"})
end
test "a map", %{graph1: graph1, graph2: graph2, graph3: graph3} do
assert Graph.delete(graph1, %{EX.S => {EX.p(), [EX.O, EX.O2]}}) == Graph.new()
assert Graph.delete(graph2, %{EX.S => {EX.p(), [EX.O1, EX.O2]}}) ==
Graph.new(name: EX.Graph)
assert Graph.delete(
graph3,
%{
EX.S1 => %{EX.p1() => [EX.O1, EX.O2]},
EX.S2 => %{EX.p2() => EX.O3},
EX.S3 => %{EX.p3() => ~B<foo>}
}
) == Graph.new({EX.S3, EX.p3(), ~L"bar"})
end
test "a description",
%{graph1: graph1, graph2: graph2, graph3: graph3} do
assert Graph.delete(
graph1,
Description.new(EX.S)
|> Description.add([{EX.p(), EX.O}, {EX.p2(), EX.O2}])
) == Graph.new()
assert Graph.delete(graph2, Description.new(EX.S, init: {EX.p(), [EX.O1, EX.O2]})) ==
Graph.new(name: EX.Graph)
assert Graph.delete(graph3, Description.new(EX.S3, init: {EX.p3(), ~B<foo>})) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), [~L"bar"]}
])
end
test "a graph",
%{graph1: graph1, graph2: graph2, graph3: graph3} do
assert Graph.delete(graph1, graph2) == graph1
assert Graph.delete(graph1, graph1) == Graph.new()
assert Graph.delete(
graph2,
Graph.new({EX.S, EX.p(), [EX.O1, EX.O3]}, name: EX.Graph)
) ==
Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph)
assert Graph.delete(
graph3,
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), ~B<foo>}
])
) == Graph.new({EX.S3, EX.p3(), ~L"bar"})
end
test "with a context", %{graph2: graph2} do
assert Graph.delete(
graph2,
[
%{EX.S => %{p: EX.O1}},
%{EX.S => {:p, [EX.O2]}}
],
context: [p: EX.p()]
) ==
Graph.new(name: EX.Graph)
end
test "preserves the name and prefixes" do
graph =
Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.GraphName, prefixes: %{ex: EX})
|> Graph.delete({EX.Subject, EX.predicate(), EX.Object})
assert graph.name == RDF.iri(EX.GraphName)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "structs are causing an error" do
assert_raise FunctionClauseError, fn ->
Graph.delete(graph(), Date.utc_today())
end
assert_raise FunctionClauseError, fn ->
Graph.delete(graph(), RDF.dataset())
end
end
end
describe "delete_descriptions/2" do
setup do
{:ok,
graph1: Graph.new({EX.S, EX.p(), [EX.O1, EX.O2]}, name: EX.Graph),
graph2:
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), [~B<foo>, ~L"bar"]}
])}
end
test "a single subject", %{graph1: graph1} do
assert Graph.delete_descriptions(graph1, EX.Other) == graph1
assert Graph.delete_descriptions(graph1, EX.S) == Graph.new(name: EX.Graph)
end
test "a list of subjects", %{graph1: graph1, graph2: graph2} do
assert Graph.delete_descriptions(graph1, [EX.S, EX.Other]) == Graph.new(name: EX.Graph)
assert Graph.delete_descriptions(graph2, [EX.S1, EX.S2, EX.S3]) == Graph.new()
end
end
describe "update/4" do
test "a description returned from the update function becomes new description of the subject" do
old_description = Description.new(EX.S2, init: {EX.p2(), EX.O3})
new_description = Description.new(EX.S2, init: {EX.p(), EX.O})
assert Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
old_description
])
|> Graph.update(EX.S2, fn ^old_description -> new_description end) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
new_description
])
end
test "a description with another subject returned from the update function becomes new description of the subject" do
old_description = Description.new(EX.S2, init: {EX.p2(), EX.O3})
new_description = Description.new(EX.S2, init: {EX.p(), EX.O})
assert Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
old_description
])
|> Graph.update(
EX.S2,
fn ^old_description ->
Description.new(EX.S3, init: new_description)
end
) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
new_description
])
end
test "a value returned from the update function becomes new coerced description of the subject" do
old_description = Description.new(EX.S2, init: {EX.p2(), EX.O3})
new_description = {EX.p(), [EX.O1, EX.O2]}
assert Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
old_description
])
|> Graph.update(
EX.S2,
fn ^old_description -> new_description end
) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
Description.new(EX.S2)
|> Description.add(new_description)
])
end
test "returning nil from the update function causes a removal of the description" do
assert Graph.new({EX.S, EX.p(), EX.O})
|> Graph.update(EX.S, fn _ -> nil end) ==
Graph.new()
end
test "when the property is not present the initial object value is added for the predicate and the update function not called" do
fun = fn _ -> raise "should not be called" end
assert Graph.new()
|> Graph.update(EX.S, {EX.P, EX.O}, fun) ==
Graph.new({EX.S, EX.P, EX.O})
assert Graph.new()
|> Graph.update(EX.S, fun) ==
Graph.new()
end
end
test "pop" do
assert Graph.pop(Graph.new()) == {nil, Graph.new()}
{triple, graph} = Graph.new({EX.S, EX.p(), EX.O}) |> Graph.pop()
assert {iri(EX.S), iri(EX.p()), iri(EX.O)} == triple
assert Enum.count(graph.descriptions) == 0
{{subject, predicate, _}, graph} =
Graph.new([{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}])
|> Graph.pop()
assert {subject, predicate} == {iri(EX.S), iri(EX.p())}
assert Enum.count(graph.descriptions) == 1
{{subject, _, _}, graph} =
Graph.new([{EX.S, EX.p1(), EX.O1}, {EX.S, EX.p2(), EX.O2}])
|> Graph.pop()
assert subject == iri(EX.S)
assert Enum.count(graph.descriptions) == 1
end
test "statement_count/1" do
assert Graph.statement_count(graph()) == 0
assert Graph.statement_count(Graph.new(statement())) == 1
end
test "empty?/1" do
assert Graph.empty?(graph()) == true
assert Graph.empty?(Graph.new(statement())) == false
end
describe "include?/3" do
test "valid cases" do
graph =
Graph.new([
{EX.S1, EX.p(), EX.O1},
{EX.S2, EX.p(), EX.O2}
])
assert Graph.include?(graph, {EX.S1, EX.p(), EX.O1})
assert Graph.include?(graph, {EX.S1, EX.p(), EX.O1, EX.Graph})
assert Graph.include?(graph, [{EX.S1, EX.p(), EX.O1}])
assert Graph.include?(graph, [
{EX.S1, EX.p(), EX.O1},
{EX.S2, EX.p(), EX.O2}
])
refute Graph.include?(graph, [
{EX.S1, EX.p(), EX.O1},
{EX.S2, EX.p(), EX.O3}
])
assert Graph.include?(graph, EX.S1 |> EX.p(EX.O1))
assert Graph.include?(graph, Graph.new(EX.S1 |> EX.p(EX.O1)))
assert Graph.include?(graph, graph)
assert Graph.include?(
graph,
[
%{EX.S1 => %{p: EX.O1}},
%{EX.S2 => {:p, [EX.O2]}}
],
context: [p: EX.p()]
)
end
test "structs are causing an error" do
assert_raise FunctionClauseError, fn ->
Graph.include?(graph(), Date.utc_today())
end
assert_raise FunctionClauseError, fn ->
Graph.include?(graph(), RDF.dataset())
end
end
end
test "values/1" do
assert Graph.new() |> Graph.values() == %{}
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.values() ==
%{
RDF.Term.value(EX.s1()) => %{RDF.Term.value(EX.p()) => [RDF.Term.value(EX.o1())]},
RDF.Term.value(EX.s2()) => %{RDF.Term.value(EX.p()) => [RDF.Term.value(EX.o2())]}
}
end
test "values/2" do
expected_result = %{
RDF.Term.value(EX.s1()) => %{p: [RDF.Term.value(EX.o1())]},
RDF.Term.value(EX.s2()) => %{p: [RDF.Term.value(EX.o2())]}
}
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.values(context: PropertyMap.new(p: EX.p())) ==
expected_result
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.values(context: [p: EX.p()]) ==
expected_result
end
test "map/2" do
mapping = fn
{:predicate, predicate} ->
predicate |> to_string() |> String.split("/") |> List.last() |> String.to_atom()
{_, term} ->
RDF.Term.value(term)
end
assert Graph.new() |> Graph.map(mapping) == %{}
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.map(mapping) ==
%{
RDF.Term.value(EX.s1()) => %{p: [RDF.Term.value(EX.o1())]},
RDF.Term.value(EX.s2()) => %{p: [RDF.Term.value(EX.o2())]}
}
end
describe "take/2" do
test "with a non-empty subject list" do
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.take([EX.s2(), EX.s3()]) ==
Graph.new([{EX.s2(), EX.p(), EX.o2()}])
end
test "with an empty subject list" do
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.take([]) == Graph.new()
end
test "with nil" do
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.take(nil) ==
Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
end
end
describe "take/3" do
test "with non-empty subject and property lists" do
assert Graph.new([
{EX.s1(), EX.p1(), EX.o1()},
{EX.s1(), EX.p2(), EX.o1()},
{EX.s2(), EX.p1(), EX.o2()}
])
|> Graph.take([EX.s1(), EX.s3()], [EX.p2()]) ==
Graph.new([{EX.s1(), EX.p2(), EX.o1()}])
end
test "with an empty subject list" do
assert Graph.new(
[
{EX.s1(), EX.p1(), EX.o1()},
{EX.s1(), EX.p2(), EX.o1()},
{EX.s2(), EX.p1(), EX.o2()}
],
name: EX.Graph
)
|> Graph.take([], [EX.p1()]) == Graph.new(name: EX.Graph)
end
test "with nil" do
assert Graph.new([
{EX.s1(), EX.p1(), EX.o1()},
{EX.s1(), EX.p2(), EX.o1()},
{EX.s2(), EX.p1(), EX.o2()}
])
|> Graph.take(nil, [EX.p1()]) ==
Graph.new([{EX.s1(), EX.p1(), EX.o1()}, {EX.s2(), EX.p1(), EX.o2()}])
end
end
test "equal/2" do
assert Graph.new({EX.S, EX.p(), EX.O})
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}))
assert Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1)
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1))
assert Graph.new({EX.S, EX.p(), EX.O}, prefixes: %{ex: EX})
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, prefixes: %{xsd: XSD}))
assert Graph.new({EX.S, EX.p(), EX.O}, base_iri: EX.base())
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, base_iri: EX.other_base()))
refute Graph.new({EX.S, EX.p(), EX.O})
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O2}))
refute Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1)
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph2))
end
test "prefixes/1" do
assert Graph.prefixes(graph()) == nil
assert %Graph{prefixes: PrefixMap.new()} |> Graph.prefixes() == PrefixMap.new()
end
describe "add_prefixes/2" do
test "when prefixes already exist" do
graph = Graph.new(prefixes: %{xsd: XSD}) |> Graph.add_prefixes(ex: EX)
assert graph.prefixes == PrefixMap.new(xsd: XSD, ex: EX)
end
test "when prefixes are not defined yet" do
graph = Graph.new() |> Graph.add_prefixes(ex: EX)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "when prefixes have conflicting mappings, the new mapping is used" do
graph = Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes(ex: XSD)
assert graph.prefixes == PrefixMap.new(ex: XSD)
end
test "when prefixes have conflicting mappings and a conflict resolver function is provided" do
graph =
Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes([ex: XSD], fn _, ns, _ -> ns end)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
end
describe "delete_prefixes/2" do
test "when given a single prefix" do
graph = Graph.new(prefixes: %{ex: EX}) |> Graph.delete_prefixes(:ex)
assert graph.prefixes == PrefixMap.new()
end
test "when given a list of prefixes" do
graph =
Graph.new(prefixes: %{ex1: EX, ex2: EX}) |> Graph.delete_prefixes([:ex1, :ex2, :ex3])
assert graph.prefixes == PrefixMap.new()
end
test "when prefixes are not defined yet" do
graph = Graph.new() |> Graph.delete_prefixes(:ex)
assert graph.prefixes == nil
end
end
test "clear_prefixes/1" do
assert Graph.clear_prefixes(Graph.new(prefixes: %{ex: EX})) == Graph.new()
end
test "base_iri/1" do
assert Graph.base_iri(graph()) == nil
assert %Graph{base_iri: ~I<http://example.com/>} |> Graph.base_iri() ==
~I<http://example.com/>
end
describe "set_base_iri/1" do
test "when given an IRI" do
graph = Graph.new() |> Graph.set_base_iri(~I<http://example.com/>)
assert graph.base_iri == ~I<http://example.com/>
end
test "when given a term atom under a vocabulary namespace" do
graph = Graph.new() |> Graph.set_base_iri(EX.Base)
assert graph.base_iri == RDF.iri(EX.Base)
end
test "when given a vocabulary namespace module" do
graph = Graph.new() |> Graph.set_base_iri(EX)
assert graph.base_iri == RDF.iri(EX.__base_iri__())
end
test "when given nil" do
graph = Graph.new() |> Graph.set_base_iri(nil)
assert graph.base_iri == nil
end
end
test "clear_base_iri/1" do
assert Graph.clear_base_iri(Graph.new(base_iri: EX.base())) == Graph.new()
end
test "clear_metadata/1" do
assert Graph.clear_metadata(Graph.new(base_iri: EX.base(), prefixes: %{ex: EX})) ==
Graph.new()
end
test "triples/1" do
assert Graph.new([
{EX.S1, EX.p1(), EX.O1},
{EX.S2, EX.p2(), EX.O2},
{EX.S1, EX.p3(), EX.O3}
])
|> Graph.triples() ==
[
{RDF.iri(EX.S1), EX.p1(), RDF.iri(EX.O1)},
{RDF.iri(EX.S1), EX.p3(), RDF.iri(EX.O3)},
{RDF.iri(EX.S2), EX.p2(), RDF.iri(EX.O2)}
]
end
describe "Enumerable protocol" do
test "Enum.count" do
assert Enum.count(Graph.new(name: EX.foo())) == 0
assert Enum.count(Graph.new({EX.S, EX.p(), EX.O})) == 1
assert Enum.count(Graph.new([{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}])) == 2
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert Enum.count(g) == 3
end
test "Enum.member?" do
refute Enum.member?(Graph.new(), {iri(EX.S), EX.p(), iri(EX.O)})
assert Enum.member?(Graph.new({EX.S, EX.p(), EX.O}), {EX.S, EX.p(), EX.O})
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert Enum.member?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert Enum.member?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert Enum.member?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "Enum.reduce" do
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert g == Enum.reduce(g, graph(), fn triple, acc -> acc |> Graph.add(triple) end)
end
test "Enum.at (for Enumerable.slice/1)" do
assert Graph.new({EX.S, EX.p(), EX.O})
|> Enum.at(0) == {RDF.iri(EX.S), EX.p(), RDF.iri(EX.O)}
end
end
describe "Collectable protocol" do
test "with a list of triples" do
triples = [
{EX.Subject, EX.predicate1(), EX.Object1},
{EX.Subject, EX.predicate2(), EX.Object2}
]
assert Enum.into(triples, Graph.new()) == Graph.new(triples)
end
test "with a list of lists" do
lists = [
[EX.Subject, EX.predicate1(), EX.Object1],
[EX.Subject, EX.predicate2(), EX.Object2]
]
assert Enum.into(lists, Graph.new()) ==
Graph.new(Enum.map(lists, &List.to_tuple/1))
end
end
describe "Access behaviour" do
test "access with the [] operator" do
assert Graph.new()[EX.Subject] == nil
assert Graph.new({EX.S, EX.p(), EX.O})[EX.S] ==
Description.new(EX.S, init: {EX.p(), EX.O})
end
end
end