rdf-ex/test/unit/graph_test.exs

875 lines
30 KiB
Elixir

defmodule RDF.GraphTest do
use RDF.Test.Case
doctest RDF.Graph
alias RDF.PrefixMap
alias RDF.NS.{XSD, RDFS}
describe "new" do
test "creating an empty unnamed graph" do
assert unnamed_graph?(unnamed_graph())
end
test "creating an empty graph with a proper graph name" do
refute unnamed_graph?(named_graph())
assert named_graph?(named_graph())
end
test "creating an empty graph with a blank node as graph name" do
assert named_graph(bnode("graph_name"))
|> named_graph?(bnode("graph_name"))
end
test "creating an empty graph with a coercible graph name" do
assert named_graph("http://example.com/graph/GraphName")
|> named_graph?(iri("http://example.com/graph/GraphName"))
assert named_graph(EX.Foo) |> named_graph?(iri(EX.Foo))
end
test "creating an unnamed graph with an initial triple" do
g = Graph.new({EX.Subject, EX.predicate(), EX.Object})
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
g = Graph.new(EX.Subject, EX.predicate(), EX.Object)
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating a named graph with an initial triple" do
g = Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
g = Graph.new(EX.Subject, EX.predicate(), EX.Object, name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph with a list of initial triples" do
g =
Graph.new([
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject2, EX.predicate2(), EX.Object2}
])
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
g = Graph.new(EX.Subject, EX.predicate(), [EX.Object1, EX.Object2])
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object2})
end
test "creating a named graph with a list of initial triples" do
g =
Graph.new(
[{EX.Subject, EX.predicate1(), EX.Object1}, {EX.Subject, EX.predicate2(), EX.Object2}],
name: EX.GraphName
)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject, EX.predicate2(), EX.Object2})
g = Graph.new(EX.Subject, EX.predicate(), [EX.Object1, EX.Object2], name: EX.GraphName)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object2})
end
test "creating a named graph with an initial description" do
g =
Graph.new(Description.new({EX.Subject, EX.predicate(), EX.Object}),
name: EX.GraphName
)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph with an initial description" do
g = Graph.new(Description.new({EX.Subject, EX.predicate(), EX.Object}))
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph with an empty description" do
g = Graph.new(Description.new(EX.Subject))
assert empty_graph?(g)
end
test "creating a named graph from another graph" do
g =
Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object}),
name: EX.GraphName
)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
g =
Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.OtherGraphName),
name: EX.GraphName
)
assert named_graph?(g, iri(EX.GraphName))
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "creating an unnamed graph from another graph" do
g = Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object}))
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
g = Graph.new(Graph.new({EX.Subject, EX.predicate(), EX.Object}, name: EX.OtherGraphName))
assert unnamed_graph?(g)
assert graph_includes_statement?(g, {EX.Subject, EX.predicate(), EX.Object})
end
test "with prefixes" do
assert Graph.new(prefixes: %{ex: EX}) ==
%Graph{prefixes: PrefixMap.new(ex: EX)}
assert Graph.new(prefixes: %{ex: EX}, name: EX.graph_name()) ==
%Graph{prefixes: PrefixMap.new(ex: EX), name: EX.graph_name()}
assert Graph.new({EX.Subject, EX.predicate(), EX.Object}, prefixes: %{ex: EX}) ==
%Graph{
Graph.new({EX.Subject, EX.predicate(), EX.Object})
| prefixes: PrefixMap.new(ex: EX)
}
end
test "with base_iri" do
assert Graph.new(base_iri: EX.base()) ==
%Graph{base_iri: EX.base()}
assert Graph.new(prefixes: %{ex: EX}, base_iri: EX.base()) ==
%Graph{prefixes: PrefixMap.new(ex: EX), base_iri: EX.base()}
assert Graph.new({EX.Subject, EX.predicate(), EX.Object}, base_iri: EX.base()) ==
%Graph{Graph.new({EX.Subject, EX.predicate(), EX.Object}) | base_iri: EX.base()}
end
test "creating a graph from another graph takes the prefixes from the other graph, but overwrites if necessary" do
prefix_map = PrefixMap.new(ex: EX)
g = Graph.new(Graph.new(prefixes: prefix_map))
assert g.prefixes == prefix_map
g = Graph.new(Graph.new(prefixes: %{ex: XSD, rdfs: RDFS}), prefixes: prefix_map)
assert g.prefixes == PrefixMap.new(ex: EX, rdfs: RDFS)
end
end
test "clear/1" do
opts = [name: EX.Graph, base_iri: EX.base(), prefixes: %{ex: EX.prefix()}]
assert Graph.new({EX.S, EX.p(), EX.O}, opts)
|> Graph.clear() == Graph.new(opts)
end
describe "add" do
test "a proper triple" do
assert Graph.add(graph(), iri(EX.Subject), EX.predicate(), iri(EX.Object))
|> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object})
assert Graph.add(graph(), {iri(EX.Subject), EX.predicate(), iri(EX.Object)})
|> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object})
end
test "a coercible triple" do
assert Graph.add(graph(), "http://example.com/Subject", EX.predicate(), EX.Object)
|> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object})
assert Graph.add(
graph(),
{"http://example.com/Subject", EX.predicate(), EX.Object}
)
|> graph_includes_statement?({EX.Subject, EX.predicate(), EX.Object})
end
test "a triple with multiple objects" do
g = Graph.add(graph(), EX.Subject1, EX.predicate1(), [EX.Object1, EX.Object2])
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object2})
end
test "a list of triples" do
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "a Description" do
g =
Graph.add(
graph(),
Description.new(EX.Subject1, [
{EX.predicate1(), EX.Object1},
{EX.predicate2(), EX.Object2}
])
)
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
g = Graph.add(g, Description.new({EX.Subject1, EX.predicate3(), EX.Object3}))
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3(), EX.Object3})
end
test "a list of Descriptions" do
g =
Graph.add(graph(), [
Description.new({EX.Subject1, EX.predicate1(), EX.Object1}),
Description.new({EX.Subject2, EX.predicate2(), EX.Object2}),
Description.new({EX.Subject1, EX.predicate3(), EX.Object3})
])
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate3(), EX.Object3})
end
test "duplicates are ignored" do
g = Graph.add(graph(), {EX.Subject, EX.predicate(), EX.Object})
assert Graph.add(g, {EX.Subject, EX.predicate(), EX.Object}) == g
end
test "a Graph" do
g =
Graph.add(
graph(),
Graph.new([
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject2, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
)
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
g =
Graph.add(
g,
Graph.new([
{EX.Subject1, EX.predicate1(), EX.Object2},
{EX.Subject2, EX.predicate4(), EX.Object4}
])
)
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert graph_includes_statement?(g, {EX.Subject1, EX.predicate1(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate2(), EX.Object2})
assert graph_includes_statement?(g, {EX.Subject2, EX.predicate4(), EX.Object4})
assert graph_includes_statement?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "merges the prefixes of another graph" do
graph =
Graph.new(prefixes: %{xsd: XSD})
|> Graph.add(Graph.new(prefixes: %{rdfs: RDFS}))
assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS)
end
test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do
graph =
Graph.new(prefixes: %{ex: EX})
|> Graph.add(Graph.new(prefixes: %{ex: XSD}))
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "preserves the base_iri" do
graph =
Graph.new()
|> Graph.add(Graph.new({EX.Subject, EX.predicate(), EX.Object}, base_iri: EX.base()))
assert graph.base_iri == Graph.new().base_iri
end
test "preserves the name and prefixes when the data provided is not a graph" do
graph =
Graph.new(name: EX.GraphName, prefixes: %{ex: EX})
|> Graph.add(EX.Subject, EX.predicate(), EX.Object)
assert graph.name == RDF.iri(EX.GraphName)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "non-coercible Triple elements are causing an error" do
assert_raise RDF.IRI.InvalidError, fn ->
Graph.add(graph(), {"not a IRI", EX.predicate(), iri(EX.Object)})
end
assert_raise RDF.Literal.InvalidError, fn ->
Graph.add(graph(), {EX.Subject, EX.prop(), self()})
end
end
end
describe "put" do
test "a list of triples" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}])
|> RDF.Graph.put([
{EX.S1, EX.P2, EX.O3},
{EX.S1, EX.P2, bnode(:foo)},
{EX.S2, EX.P2, EX.O3},
{EX.S2, EX.P2, EX.O4}
])
assert Graph.triple_count(g) == 5
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P2, EX.O3})
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O3})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O4})
end
test "a Description" do
g =
Graph.new([{EX.S1, EX.P1, EX.O1}, {EX.S2, EX.P2, EX.O2}, {EX.S1, EX.P3, EX.O3}])
|> RDF.Graph.put(Description.new(EX.S1, [{EX.P3, EX.O4}, {EX.P2, bnode(:foo)}]))
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4})
assert graph_includes_statement?(g, {EX.S1, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S2, EX.P2, EX.O2})
end
test "a Graph" do
g =
Graph.new([
{EX.S1, EX.P1, EX.O1},
{EX.S1, EX.P3, EX.O3},
{EX.S2, EX.P2, EX.O2}
])
|> RDF.Graph.put(
Graph.new([
{EX.S1, EX.P3, EX.O4},
{EX.S2, EX.P2, bnode(:foo)},
{EX.S3, EX.P3, EX.O3}
])
)
assert Graph.triple_count(g) == 4
assert graph_includes_statement?(g, {EX.S1, EX.P1, EX.O1})
assert graph_includes_statement?(g, {EX.S1, EX.P3, EX.O4})
assert graph_includes_statement?(g, {EX.S2, EX.P2, bnode(:foo)})
assert graph_includes_statement?(g, {EX.S3, EX.P3, EX.O3})
end
test "merges the prefixes of another graph" do
graph =
Graph.new(prefixes: %{xsd: XSD})
|> Graph.put(Graph.new(prefixes: %{rdfs: RDFS}))
assert graph.prefixes == PrefixMap.new(xsd: XSD, rdfs: RDFS)
end
test "merges the prefixes of another graph and keeps the original mapping in case of conflicts" do
graph =
Graph.new(prefixes: %{ex: EX})
|> Graph.put(Graph.new(prefixes: %{ex: XSD}))
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "preserves the name, base_iri and prefixes" do
graph =
Graph.new(name: EX.GraphName, prefixes: %{ex: EX}, base_iri: EX.base())
|> Graph.put(EX.Subject, EX.predicate(), EX.Object)
assert graph.name == RDF.iri(EX.GraphName)
assert graph.prefixes == PrefixMap.new(ex: EX)
assert graph.base_iri == EX.base()
end
end
describe "delete" do
setup do
{:ok,
graph1: Graph.new({EX.S, EX.p(), EX.O}),
graph2: Graph.new({EX.S, EX.p(), [EX.O1, EX.O2]}, name: EX.Graph),
graph3:
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), [~B<foo>, ~L"bar"]}
])}
end
test "a single statement as a triple",
%{graph1: graph1, graph2: graph2} do
assert Graph.delete(Graph.new(), {EX.S, EX.p(), EX.O}) == Graph.new()
assert Graph.delete(graph1, {EX.S, EX.p(), EX.O}) == Graph.new()
assert Graph.delete(graph2, {EX.S, EX.p(), EX.O1}) ==
Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph)
assert Graph.delete(graph2, {EX.S, EX.p(), EX.O1}) ==
Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph)
end
test "multiple statements with a triple with multiple objects",
%{graph1: graph1, graph2: graph2} do
assert Graph.delete(Graph.new(), {EX.S, EX.p(), [EX.O1, EX.O2]}) == Graph.new()
assert Graph.delete(graph1, {EX.S, EX.p(), [EX.O, EX.O2]}) == Graph.new()
assert Graph.delete(graph2, {EX.S, EX.p(), [EX.O1, EX.O2]}) == Graph.new(name: EX.Graph)
end
test "multiple statements with a list of triples",
%{graph1: graph1, graph2: graph2, graph3: graph3} do
assert Graph.delete(graph1, [{EX.S, EX.p(), EX.O}, {EX.S, EX.p(), EX.O2}]) == Graph.new()
assert Graph.delete(graph2, [{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}]) ==
Graph.new(name: EX.Graph)
assert Graph.delete(graph3, [
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), ~B<foo>}
]) == Graph.new({EX.S3, EX.p3(), ~L"bar"})
end
test "multiple statements with a Description",
%{graph1: graph1, graph2: graph2, graph3: graph3} do
assert Graph.delete(
graph1,
Description.new(
EX.S,
[{EX.p(), EX.O}, {EX.p2(), EX.O2}]
)
) == Graph.new()
assert Graph.delete(graph2, Description.new(EX.S, EX.p(), [EX.O1, EX.O2])) ==
Graph.new(name: EX.Graph)
assert Graph.delete(graph3, Description.new(EX.S3, EX.p3(), ~B<foo>)) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), [~L"bar"]}
])
end
test "multiple statements with a Graph",
%{graph1: graph1, graph2: graph2, graph3: graph3} do
assert Graph.delete(graph1, graph2) == graph1
assert Graph.delete(graph1, graph1) == Graph.new()
assert Graph.delete(
graph2,
Graph.new({EX.S, EX.p(), [EX.O1, EX.O3]},
name: EX.Graph
)
) ==
Graph.new({EX.S, EX.p(), EX.O2}, name: EX.Graph)
assert Graph.delete(
graph3,
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), ~B<foo>}
])
) == Graph.new({EX.S3, EX.p3(), ~L"bar"})
end
test "preserves the name and prefixes" do
graph =
Graph.new(EX.Subject, EX.predicate(), EX.Object, name: EX.GraphName, prefixes: %{ex: EX})
|> Graph.delete(EX.Subject, EX.predicate(), EX.Object)
assert graph.name == RDF.iri(EX.GraphName)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
end
describe "delete_subjects" do
setup do
{:ok,
graph1: Graph.new({EX.S, EX.p(), [EX.O1, EX.O2]}, name: EX.Graph),
graph2:
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
{EX.S2, EX.p2(), EX.O3},
{EX.S3, EX.p3(), [~B<foo>, ~L"bar"]}
])}
end
test "a single subject", %{graph1: graph1} do
assert Graph.delete_subjects(graph1, EX.Other) == graph1
assert Graph.delete_subjects(graph1, EX.S) == Graph.new(name: EX.Graph)
end
test "a list of subjects", %{graph1: graph1, graph2: graph2} do
assert Graph.delete_subjects(graph1, [EX.S, EX.Other]) == Graph.new(name: EX.Graph)
assert Graph.delete_subjects(graph2, [EX.S1, EX.S2, EX.S3]) == Graph.new()
end
end
describe "update/4" do
test "a description returned from the update function becomes new description of the subject" do
old_description = Description.new({EX.S2, EX.p2(), EX.O3})
new_description = Description.new({EX.S2, EX.p(), EX.O})
assert Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
old_description
])
|> Graph.update(EX.S2, fn ^old_description -> new_description end) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
new_description
])
end
test "a description with another subject returned from the update function becomes new description of the subject" do
old_description = Description.new({EX.S2, EX.p2(), EX.O3})
new_description = Description.new({EX.S2, EX.p(), EX.O})
assert Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
old_description
])
|> Graph.update(
EX.S2,
fn ^old_description -> Description.new(EX.S3, new_description) end
) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
new_description
])
end
test "a value returned from the update function becomes new coerced description of the subject" do
old_description = Description.new({EX.S2, EX.p2(), EX.O3})
new_description = {EX.p(), [EX.O1, EX.O2]}
assert Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
old_description
])
|> Graph.update(
EX.S2,
fn ^old_description -> new_description end
) ==
Graph.new([
{EX.S1, EX.p1(), [EX.O1, EX.O2]},
Description.new(EX.S2, new_description)
])
end
test "returning nil from the update function causes a removal of the description" do
assert Graph.new({EX.S, EX.p(), EX.O})
|> Graph.update(EX.S, fn _ -> nil end) ==
Graph.new()
end
test "when the property is not present the initial object value is added for the predicate and the update function not called" do
fun = fn _ -> raise "should not be called" end
assert Graph.new()
|> Graph.update(EX.S, {EX.P, EX.O}, fun) ==
Graph.new(EX.S, EX.P, EX.O)
assert Graph.new()
|> Graph.update(EX.S, fun) ==
Graph.new()
end
end
test "pop" do
assert Graph.pop(Graph.new()) == {nil, Graph.new()}
{triple, graph} = Graph.new({EX.S, EX.p(), EX.O}) |> Graph.pop()
assert {iri(EX.S), iri(EX.p()), iri(EX.O)} == triple
assert Enum.count(graph.descriptions) == 0
{{subject, predicate, _}, graph} =
Graph.new([{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}])
|> Graph.pop()
assert {subject, predicate} == {iri(EX.S), iri(EX.p())}
assert Enum.count(graph.descriptions) == 1
{{subject, _, _}, graph} =
Graph.new([{EX.S, EX.p1(), EX.O1}, {EX.S, EX.p2(), EX.O2}])
|> Graph.pop()
assert subject == iri(EX.S)
assert Enum.count(graph.descriptions) == 1
end
test "values/1" do
assert Graph.new() |> Graph.values() == %{}
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.values() ==
%{
RDF.Term.value(EX.s1()) => %{RDF.Term.value(EX.p()) => [RDF.Term.value(EX.o1())]},
RDF.Term.value(EX.s2()) => %{RDF.Term.value(EX.p()) => [RDF.Term.value(EX.o2())]}
}
end
test "values/2" do
mapping = fn
{:predicate, predicate} ->
predicate |> to_string() |> String.split("/") |> List.last() |> String.to_atom()
{_, term} ->
RDF.Term.value(term)
end
assert Graph.new() |> Graph.values(mapping) == %{}
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.values(mapping) ==
%{
RDF.Term.value(EX.s1()) => %{p: [RDF.Term.value(EX.o1())]},
RDF.Term.value(EX.s2()) => %{p: [RDF.Term.value(EX.o2())]}
}
end
describe "take/2" do
test "with a non-empty subject list" do
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.take([EX.s2(), EX.s3()]) ==
Graph.new([{EX.s2(), EX.p(), EX.o2()}])
end
test "with an empty subject list" do
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.take([]) == Graph.new()
end
test "with nil" do
assert Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
|> Graph.take(nil) ==
Graph.new([{EX.s1(), EX.p(), EX.o1()}, {EX.s2(), EX.p(), EX.o2()}])
end
end
describe "take/3" do
test "with non-empty subject and property lists" do
assert Graph.new([
{EX.s1(), EX.p1(), EX.o1()},
{EX.s1(), EX.p2(), EX.o1()},
{EX.s2(), EX.p1(), EX.o2()}
])
|> Graph.take([EX.s1(), EX.s3()], [EX.p2()]) ==
Graph.new([{EX.s1(), EX.p2(), EX.o1()}])
end
test "with an empty subject list" do
assert Graph.new(
[
{EX.s1(), EX.p1(), EX.o1()},
{EX.s1(), EX.p2(), EX.o1()},
{EX.s2(), EX.p1(), EX.o2()}
],
name: EX.Graph
)
|> Graph.take([], [EX.p1()]) == Graph.new(name: EX.Graph)
end
test "with nil" do
assert Graph.new([
{EX.s1(), EX.p1(), EX.o1()},
{EX.s1(), EX.p2(), EX.o1()},
{EX.s2(), EX.p1(), EX.o2()}
])
|> Graph.take(nil, [EX.p1()]) ==
Graph.new([{EX.s1(), EX.p1(), EX.o1()}, {EX.s2(), EX.p1(), EX.o2()}])
end
end
test "equal/2" do
assert Graph.new({EX.S, EX.p(), EX.O}) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}))
assert Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1)
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1))
assert Graph.new({EX.S, EX.p(), EX.O}, prefixes: %{ex: EX})
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, prefixes: %{xsd: XSD}))
assert Graph.new({EX.S, EX.p(), EX.O}, base_iri: EX.base())
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, base_iri: EX.other_base()))
refute Graph.new({EX.S, EX.p(), EX.O}) |> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O2}))
refute Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph1)
|> Graph.equal?(Graph.new({EX.S, EX.p(), EX.O}, name: EX.Graph2))
end
describe "add_prefixes/2" do
test "when prefixes already exist" do
graph = Graph.new(prefixes: %{xsd: XSD}) |> Graph.add_prefixes(ex: EX)
assert graph.prefixes == PrefixMap.new(xsd: XSD, ex: EX)
end
test "when prefixes are not defined yet" do
graph = Graph.new() |> Graph.add_prefixes(ex: EX)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
test "when prefixes have conflicting mappings, the new mapping is used" do
graph = Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes(ex: XSD)
assert graph.prefixes == PrefixMap.new(ex: XSD)
end
test "when prefixes have conflicting mappings and a conflict resolver function is provided" do
graph =
Graph.new(prefixes: %{ex: EX}) |> Graph.add_prefixes([ex: XSD], fn _, ns, _ -> ns end)
assert graph.prefixes == PrefixMap.new(ex: EX)
end
end
describe "delete_prefixes/2" do
test "when given a single prefix" do
graph = Graph.new(prefixes: %{ex: EX}) |> Graph.delete_prefixes(:ex)
assert graph.prefixes == PrefixMap.new()
end
test "when given a list of prefixes" do
graph =
Graph.new(prefixes: %{ex1: EX, ex2: EX}) |> Graph.delete_prefixes([:ex1, :ex2, :ex3])
assert graph.prefixes == PrefixMap.new()
end
test "when prefixes are not defined yet" do
graph = Graph.new() |> Graph.delete_prefixes(:ex)
assert graph.prefixes == nil
end
end
test "clear_prefixes/1" do
assert Graph.clear_prefixes(Graph.new(prefixes: %{ex: EX})) == Graph.new()
end
describe "set_base_iri/1" do
test "when given an IRI" do
graph = Graph.new() |> Graph.set_base_iri(~I<http://example.com/>)
assert graph.base_iri == ~I<http://example.com/>
end
test "when given a term atom under a vocabulary namespace" do
graph = Graph.new() |> Graph.set_base_iri(EX.Base)
assert graph.base_iri == RDF.iri(EX.Base)
end
test "when given a vocabulary namespace module" do
graph = Graph.new() |> Graph.set_base_iri(EX)
assert graph.base_iri == RDF.iri(EX.__base_iri__())
end
test "when given nil" do
graph = Graph.new() |> Graph.set_base_iri(nil)
assert graph.base_iri == nil
end
end
test "clear_base_iri/1" do
assert Graph.clear_base_iri(Graph.new(base_iri: EX.base())) == Graph.new()
end
test "clear_metadata/1" do
assert Graph.clear_metadata(Graph.new(base_iri: EX.base(), prefixes: %{ex: EX})) ==
Graph.new()
end
describe "Enumerable protocol" do
test "Enum.count" do
assert Enum.count(Graph.new(name: EX.foo())) == 0
assert Enum.count(Graph.new({EX.S, EX.p(), EX.O})) == 1
assert Enum.count(Graph.new([{EX.S, EX.p(), EX.O1}, {EX.S, EX.p(), EX.O2}])) == 2
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert Enum.count(g) == 3
end
test "Enum.member?" do
refute Enum.member?(Graph.new(), {iri(EX.S), EX.p(), iri(EX.O)})
assert Enum.member?(Graph.new({EX.S, EX.p(), EX.O}), {EX.S, EX.p(), EX.O})
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert Enum.member?(g, {EX.Subject1, EX.predicate1(), EX.Object1})
assert Enum.member?(g, {EX.Subject1, EX.predicate2(), EX.Object2})
assert Enum.member?(g, {EX.Subject3, EX.predicate3(), EX.Object3})
end
test "Enum.reduce" do
g =
Graph.add(graph(), [
{EX.Subject1, EX.predicate1(), EX.Object1},
{EX.Subject1, EX.predicate2(), EX.Object2},
{EX.Subject3, EX.predicate3(), EX.Object3}
])
assert g == Enum.reduce(g, graph(), fn triple, acc -> acc |> Graph.add(triple) end)
end
end
describe "Collectable protocol" do
test "with a list of triples" do
triples = [
{EX.Subject, EX.predicate1(), EX.Object1},
{EX.Subject, EX.predicate2(), EX.Object2}
]
assert Enum.into(triples, Graph.new()) == Graph.new(triples)
end
test "with a list of lists" do
lists = [
[EX.Subject, EX.predicate1(), EX.Object1],
[EX.Subject, EX.predicate2(), EX.Object2]
]
assert Enum.into(lists, Graph.new()) ==
Graph.new(Enum.map(lists, &List.to_tuple/1))
end
end
describe "Access behaviour" do
test "access with the [] operator" do
assert Graph.new()[EX.Subject] == nil
assert Graph.new({EX.S, EX.p(), EX.O})[EX.S] ==
Description.new({EX.S, EX.p(), EX.O})
end
end
end